Interactions in Water Across Interfaces: From Nano to Macro-Scale Perspective

  • Rosa M. Espinosa-Marzal
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


In this work we first revisit the surface forces between two (model) mineral surfaces, mica, across an aqueous solution (KNO3) over a broad range of concentrations. The significantly improved resolution available from the extended surface force apparatus (eSFA) allows the distinction of hydrated-ion structures. Above concentrations of 0.3 mM, hydrated-ion correlations give rise to multiple collective transitions (4 ± 1 Å) in the electrical double layers upon interpenetration. These features are interpreted as the result of hydrated-ion ordering (layering), and are responsible for hydration forces, in contrast to the traditional interpretation invoking water layering. At concentrations as low as 20 mM, attractive surface forces are measured in deviation to the DLVO theory. The estimated hydration number of the ions in the confined electrolyte is significantly below that of the bulk. A confined 1–3 nm thick ionic layer condensates at concentrations >100 mM, i.e. below bulk saturation. This study leads to new insights into crystal growth in nano-confinement that differs from the classical theory of crystallization. Finally, the impact of the properties of confined water or solution and in-pore crystallization on the macro-scale description of soil water distribution is discussed.


Surface Force Mica Surface Hamaker Constant Surface Separation Stern Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to acknowledge M. Heuberger, N.D. Spencer, J.F. van der Veen, and S. Chodankar for scientific discussions. Technical support for the eSFA was provided by J. Vanicek, M. Elsener and G. Cossu. This work was supported by the Swiss National Science Foundation. Selected figures from [11] reproduced by permission of the PCCP Owner Societies.


  1. 1.
    Alcantar N, Israelachvili J, Boles J (2003) Forces and ionic transport between mica surfaces: implications for pressure solution. Geochimica et Cosmochimica Acta 67(7):1289–1304CrossRefGoogle Scholar
  2. 2.
    Boström M, Ninham BW (2004) Dispersion self-free energies and interaction free energies of finite-sized ions in salt solutions. Langmuir 20(18):7569–7574. doi: 10.1021/la049446+ CrossRefGoogle Scholar
  3. 3.
    Cahn JW (1980) Surface stress and the chemical equilibrium of small crystals–I. The case of the isotropic surface. Acta Metall 28(10):1333–1338. doi: 10.1016/0001-6160(80)90002-4 CrossRefGoogle Scholar
  4. 4.
    Chan DYC (2002) A simple algorithm for calculating electrical double layer interactions in asymmetric electrolytes–Poisson-Boltzmann theory. J Colloid Interface Sci 245(2):307–310. doi: 10.1006/jcis.2001.7942 CrossRefGoogle Scholar
  5. 5.
    Chodankar S, Perret E, Nygard K, Bunk O, Satapathy DK, Marzal RME, Balmer TE, Heuberger M, van der Veen JF (2012) Density profile of water in nanoslit. EPL (Europhys Lett) 99(2):26001CrossRefGoogle Scholar
  6. 6.
    Claesson P, Horn RG, Pashley RM (1984) Measurement of surface forces between mica sheets immersed in aqueous quaternary ammonium ion solutions. J Colloid Interface Sci 100(1):250–263. doi: 10.1016/0021-9797(84)90433-8 CrossRefGoogle Scholar
  7. 7.
    Clementi E, Barsotti R (1978) Study of the structure of molecular complexes. Coordination numbers for Li+, Na+, K+, F- and Cl- in water. Chem Phys Lett 59(1):21–25. doi: 10.1016/0009-2614(78)85605-x CrossRefGoogle Scholar
  8. 8.
    Correns CW (1949) Growth and dissolution of crystals under linear pressure. Discuss Faraday Soc 5:267–271CrossRefGoogle Scholar
  9. 9.
    Derjaguin BV (1934) Untersuchungen über die Reibung und Adhäsion, IV. Kolloid Zeitschrift 69(2):155–164. doi: 10.1007/BF01433225 CrossRefGoogle Scholar
  10. 10.
    Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim URSS 14:633–662Google Scholar
  11. 11.
    Espinosa-Marzal RM, Drobek T, Balmer T, Heuberger MP (2012) Hydrated-ion ordering in electrical double layers. Phys Chem Chem Phys 14(17):6085–6093. doi: 10.1039/C2cp40255f CrossRefGoogle Scholar
  12. 12.
    Espinosa-Marzal RM, Fontani G, Reusch F, Spencer ND, Crockett R (2013) Sugars communicate through water: oriented glycans induce long-range water structuring. Biophys J 104(12):2686–2694CrossRefGoogle Scholar
  13. 13.
    Espinosa-Marzal RM, Scherer GW (2009) Crystallization pressure exerted by in-pore confined crystals. In: Poro-mechanics IV: proceedings of the fourth biot conference on promechanics, New York, pp 1013–1018Google Scholar
  14. 14.
    Espinosa-Marzal RM, Scherer GW (2010) Advances in understanding damage by salt crystallization. Acc Chem Res 43(6):897–905. doi: 10.1021/Ar9002224 CrossRefGoogle Scholar
  15. 15.
    Espinosa-Marzal RM, Scherer GW (2012) Impact of in-pore salt crystallization on transport properties. Environ Earth Sci. doi: 10.1007/s12665-012-2087-z Google Scholar
  16. 16.
    Flatt R, Steiger M, Scherer G (2007) A commented translation of the paper by C.W. Correns and W. Steinborn on crystallization pressure. Environ Geol 52(2):187–203. doi: 10.1007/s00254-006-0509-5 CrossRefGoogle Scholar
  17. 17.
    Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322(5909):1819–1822. doi: 10.1126/science.1164271 CrossRefGoogle Scholar
  18. 18.
    Heuberger M (2001) The extended surface forces apparatus. Part I. Fast spectral correlation interferometry. Rev Sci Instrum 72(3):1700–1707. doi: 10.1063/1.1347978 CrossRefGoogle Scholar
  19. 19.
    Heuberger M, Vanicek J, Zach M (2001) The extended surface forces apparatus. II. Precision temperature control. Rev Sci Instrum 72(9):3556–3560CrossRefGoogle Scholar
  20. 20.
    Ho TA, Argyris D, Cole DR, Striolo A (2011) Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation. Langmuir 28(2):1256–1266. doi: 10.1021/la2036086 CrossRefGoogle Scholar
  21. 21.
    Horn RG, Israelachvili JN (1980) Direct measurement of forces due to solvent structure. Chem Phys Lett 71(2):192–194. doi: 10.1016/0009-2614(80)80144-8 CrossRefGoogle Scholar
  22. 22.
    Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162(4–5):404–408. doi: 10.1016/0009-2614(89)87066-6 CrossRefGoogle Scholar
  23. 23.
    Israelachvili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379(6562):219–225CrossRefGoogle Scholar
  24. 24.
    Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Elsevier, New YorkGoogle Scholar
  25. 25.
    Israelachvili JN, Adams GE (1978) Measurement of forces between 2 mica surfaces in aqueous-electrolyte solutions in range 0–100 Nm. J Chem Soc Faraday Trans 1 74:975–1001CrossRefGoogle Scholar
  26. 26.
    Israelachvili JN, Pashley RM (1983) Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306(5940):249–250CrossRefGoogle Scholar
  27. 27.
    Israelachvili JN, Tabor D (1972) The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc R Soc Lond A Math Phys Sci 331(1584):19–38. doi: 10.1098/rspa.1972.0162 CrossRefGoogle Scholar
  28. 28.
    Kjellander R, Marcelja S (1984) Correlation and image charge effects in electric double layers. Chem Phys Lett 112(1):49–53. doi: 10.1016/0009-2614(84)87039-6 CrossRefGoogle Scholar
  29. 29.
    Kjellander R, Marcelja S (1985) Inhomogeneous Coulomb fluids with image interactions between planar surfaces. I. J Chem Phys 82(4):2122–2135. doi: 10.1063/1.448350 CrossRefGoogle Scholar
  30. 30.
    Kjellander R, Marcelja S (1986) Double-layer interaction in the primitive model and the corresponding Poisson-Boltzmann description. J Phys Chem 90(7):1230–1232. doi: 10.1021/j100398a006 CrossRefGoogle Scholar
  31. 31.
    Kjellander R, Marcelja S (1986) Interaction of charged surfaces in electrolyte solutions. Chem Phys Lett 127(4):402–407. doi: 10.1016/0009-2614(86)80304-9 CrossRefGoogle Scholar
  32. 32.
    Kjellander R, Marcelja S, Quirk JP (1988) Attractive double-layer interactions between calcium clay particles. J Colloid Interface Sci 126(1):194–211. doi: 10.1016/0021-9797(88)90113-0 CrossRefGoogle Scholar
  33. 33.
    Lee SS, Fenter P, Park C, Sturchio NC, Nagy KL (2010) Hydrated cation speciation at the muscovite (001) water interface. Langmuir 26(22):16647–16651. doi: 10.1021/la1032866 CrossRefGoogle Scholar
  34. 34.
    Malani A, Ayappa KG, Murad S (2006) Effect of confinement on the hydration and solubility of NaCl in water. Chem Phys Lett 431(1–3):88–93. doi: 10.1016/j.cplett.2006.09.071 CrossRefGoogle Scholar
  35. 35.
    Miklavic SJ, Ninham BW (1990) Competition for adsorption sites by hydrated ions. J Colloid Interface Sci 134(2):305–311. doi: 10.1016/0021-9797(90)90140-j CrossRefGoogle Scholar
  36. 36.
    Ninham BW (2002) Physical chemistry: the loss of certainty. In: Nylander T, Lindman B (eds) Lipid and polymer-lipid systems, vol 120, Progress in colloid and polymer science. Springer, Berlin/Heidelberg, pp 1–12. doi: 10.1007/s02882002 CrossRefGoogle Scholar
  37. 37.
    Ninham BW, Yaminsky V (1997) Ion binding and Ion specificity: the hofmeister effect and onsager and lifshitz theories. Langmuir 13(7):2097–2108. doi: 10.1021/la960974y CrossRefGoogle Scholar
  38. 38.
    Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs + electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J Colloid Interface Sci 83(2):531–546. doi: 10.1016/0021-9797(81)90348-9 CrossRefGoogle Scholar
  39. 39.
    Pashley RM, Israelachvili JN (1984) Molecular layering of water in thin films between mica surfaces and its relation to hydration forces. J Colloid Interface Sci 101(2):511–523. doi: 10.1016/0021-9797(84)90063-8 CrossRefGoogle Scholar
  40. 40.
    Perkin S, Goldberg R, Chai L, Kampf N, Klein J (2009) Dynamic properties of confined hydration layers. Faraday Discuss 141:399–413CrossRefGoogle Scholar
  41. 41.
    Perret E, Nygard K, Satapathy DK, Balmer TE, Bunk O, Heuberger M, van der Veen JF (2009) X-ray reflectivity reveals equilibrium density profile of molecular liquid under nanometre confinement. EPL Europhys Lett 88(3):36004–36010. doi:Artn 36004, doi: 10.1209/0295-5075/88/36004 Google Scholar
  42. 42.
    Perret E, Nygard K, Satapathy DK, Balmer TE, Bunk O, Heuberger M, van der Veen JF (2010) X-ray reflectivity theory for determining the density profile of a liquid under nanometre confinement. J Synchrotron Radiat 17(4):465–472. doi: 10.1107/S0909049510014858 CrossRefGoogle Scholar
  43. 43.
    Perret E, Nygard K, Satapathy DK, Balmer TE, Bunk O, Heuberger M, van der Veen JF (2010) Molecular liquid under nanometre confinement: density profiles underlying oscillatory forces. J Phys Condens Matter 22(23):235102CrossRefGoogle Scholar
  44. 44.
    Shubin VE, Kekicheff P (1993) Electrical double layer structure revisited via a surface force apparatus: mica interfaces in lithium nitrate solutions. J Colloid Interface Sci 155(1):108–123. doi: 10.1006/jcis.1993.1016 CrossRefGoogle Scholar
  45. 45.
    Singh T, Kumar A (2008) Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach. J Phys Chem B 112(41):12968–12972. doi: 10.1021/jp8059618 CrossRefGoogle Scholar
  46. 46.
    Steiger M (2005) Crystal growth in porous materials – I: the crystallization pressure of large crystals. J Cryst Growth 282(3–4):455–469. doi: 10.1016/J.Jcrysgro.2005.05.007 CrossRefGoogle Scholar
  47. 47.
    Steiger M (2005) Crystal growth in porous materials – II: influence of crystal size on the crystallization pressure. J Cryst Growth 282(3–4):470–481. doi: 10.1016/J.Jcrysgro.2005.05.008 CrossRefGoogle Scholar
  48. 48.
    Tabor D, Winterton RHS (1969) The direct measurement of normal and retarded van der Waals forces. Proc R Soc Lond Ser A Math Phys Sci 312(1511):435–450CrossRefGoogle Scholar
  49. 49.
    Verwey EJ, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Dover Publications, AmsterdamGoogle Scholar
  50. 50.
    Xu L, Salmeron M (1998) Effects of surface ions on the friction and adhesion properties of mica. Langmuir 14(8):2187–2190. doi: 10.1021/la9713659 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Environmental Engineering and Science, Department of Civil & Environmental EngineeringUniversity of Illinois at Urbana-ChampaignIllinoisUSA

Personalised recommendations