Social Networks in Nonlinear Dynamics, Chaos and Fractals

  • Francis Moon
Part of the History of Mechanism and Machine Science book series (HMMS, volume 22)


We show how the seeds of twentieth century mathematical Chaos Theory grew in the networks associated with the internal combustion engine and radio electronics. We trace the mathematical discoveries of Henri Poincare in France at the beginning of the twentieth century to the fluid mechanics weather models of Edward Lorenz at MIT and electrical circuits of Yoshisuke Ueda in Kyoto a half-century later. This example was chosen because of the author’s close familiarity with chaotic and nonlinear dynamics. This example and the radio network show that the ideas of a network community for innovation go beyond the examples from mechanical science in Chaps.  1 4.


Chaotic Dynamic Nonlinear Oscillation Internal Combustion Engine Chaos Theory Catastrophe Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham R (2000) The chaos Avant-Garde. World Scientific Publishing Co, SingaporeGoogle Scholar
  2. Andronov AA, Vitt AA, Khaikin SE (1966) Theory of oscillators. Pergamon Press, OxfordzbMATHGoogle Scholar
  3. Arnold VI (1984) Catastrophe theory. Springer Verlag, BerlinzbMATHGoogle Scholar
  4. Britvec SJ (1973) The stability of elastic systems. Pergamon Press, New YorkGoogle Scholar
  5. Croll JG (1972) Elements of structural stability. Wiley, New YorkGoogle Scholar
  6. Diacu F, Holmes P (1996) Celestial encounters. Princeton University Press, PrincetonGoogle Scholar
  7. Duffing G (1918) Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und irhe technische Bedeutung. Druck und Verlag von F. Vieweg & Son, BraunschweigGoogle Scholar
  8. Feder J (1988) Fractals. Plenum Press, New YorkCrossRefzbMATHGoogle Scholar
  9. Gleick J (1987) Chaos: the making of a new science. Viking Penguin, New YorkGoogle Scholar
  10. Goodwin RM (1990) Chaotic economic dynamics. Clarendon Press, OxfordCrossRefGoogle Scholar
  11. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New YorkCrossRefzbMATHGoogle Scholar
  12. Hao B-L (1984) Chaos. World Scientific Publishers, SingaporeGoogle Scholar
  13. Hayashi C (1964) Nonlinear oscillations in physical systems. Princeton University Press, PrincetonzbMATHGoogle Scholar
  14. Holmes PJ (1990) Poincare celestial mechanics; dynamical systems theory and ‘Chaos’. Phys Rep 193(3):138–163CrossRefGoogle Scholar
  15. Kovacic I, Brennan MJ (eds) (2011) The duffing equation: nonlinear oscillators and their behavior. Wiley, New YorkGoogle Scholar
  16. Li T-Y, Yorke J (1975) Period three implies Chaos. Am Math Mon 82:985MathSciNetCrossRefzbMATHGoogle Scholar
  17. Lorenz E (1993) The essence of Chaos. University of Washington Press, SeattleCrossRefzbMATHGoogle Scholar
  18. Mandelbrot BB (1977) Fractals form chance and dimension. W.H. Freeman and Co, New YorkzbMATHGoogle Scholar
  19. Mandlebrot B (1982) The fractal geometry of nature. W.H. Freeman, San FranciscoGoogle Scholar
  20. Mandelbrot B (2012) The fractalist: memoir of a scientific maverick. Pantheon Books, New YorkGoogle Scholar
  21. Medio A (1992) Chaotic dynamics: theory and applications to economics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  22. Minorsky N (1962) Nonlinear oscillations. D. Van Nostrand, PrincetonzbMATHGoogle Scholar
  23. Moon FC (1987, 2004) Chaotic vibrations. Wiley, New YorkGoogle Scholar
  24. Moon FC (1992) Chaotic and fractal dynamics. Wiley, New YorkCrossRefGoogle Scholar
  25. Moon FC (2008) History of dynamics of machines and mechanisms from Leonardo to Timoshenko. In: Yan H-S, Caccarelli M (eds) International symposium on history of machines and mechanisms. Springer, pp 1–20Google Scholar
  26. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New YorkzbMATHGoogle Scholar
  27. Peitgen HO, Richter PH (1986) The beauty of fractals. Springer Verlag, BerlinCrossRefzbMATHGoogle Scholar
  28. Poston T, Stewart IN (1976) Taylor expansions and catastrophes. Pitman Publishing, LondonzbMATHGoogle Scholar
  29. Rosser JB (1999) The pre-history of chaotic economic dynamics. In: Sertel MR (eds) Contemporary economic issues. Macmillan, vol 4, pp 207–224Google Scholar
  30. Ruelle D, Takens F (1971) On the nature of turbulence. Comm Math Phys 20:167, 23:343Google Scholar
  31. Schroeder M (1991) Fractals, Chaos power laws. W.H. Freeman & Co, New YorkzbMATHGoogle Scholar
  32. Schuster (1988) Deterministic Chaos. VCH Verlag, WeinheimGoogle Scholar
  33. Stoker JJ (1950) Nonlinear vibrations. Interscience Publishers, New YorkzbMATHGoogle Scholar
  34. Stumpers FLHM (1960) Bath. Van der Pol’s work on nonlinear circuits. IRE Trans Circ Theor 7(4):366–367Google Scholar
  35. Thom R (1975) Structural stability and morphogenesis. W.A. Benjamin Inc., ReadingzbMATHGoogle Scholar
  36. Thompson DW (1917) On growth and form. Cambridge University Press, LondonGoogle Scholar
  37. Thompson JMT (1973) A general theory of elastic stability. Wiley, LondonzbMATHGoogle Scholar
  38. Thompson JMT (1982) Instabilities and catastrophes in science and engineering. Wiley, New YorkzbMATHGoogle Scholar
  39. Thompson JMT, Stewart HB (1986) Nonlinear dynamics and chaos. Wiley, New YorkzbMATHGoogle Scholar
  40. Timoshenko S (1928) Vibration problems in engineering. D. van Nostrand, New YorkzbMATHGoogle Scholar
  41. Timoshenko S, Young DH (1948) Advanced dynamics. McGraw-Hill, New YorkGoogle Scholar
  42. Turcotte D (1992) Fractals and Chaos in geology and geophysics. Cambridge University Press, CambridgeGoogle Scholar
  43. Ueda Y (1992, 2001) The road to Chaos-II. Aerial Press, Santa CruzGoogle Scholar
  44. Van der Pol B (1960) Selected scientific papers. In: Bremmer H, Bouwkamp CJ (eds) vol 2. North-Holland Publishing Co., AmsterdamGoogle Scholar
  45. Van der Pol B, Van der Mark J (1927) Frequency demultiplication. Nature 120(3019):363–364CrossRefGoogle Scholar
  46. Zeeman EC (1977) Catastrophe theory: selected papers, 1972–1977. Addison-Wesley Publishing Co, ReadingzbMATHGoogle Scholar
  47. Zipf GK (1949) Human behavior and the principle of least effort: an introduction to human ecology. Addison-Wesley Press, Inc., CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations