Skip to main content

Forest Processes

Part of the Advances in Global Change Research book series (AGLO,volume 57)

Abstract

During the twenty-first century, tree mortality from forest disturbances may switch the United States from a current carbon sink (offsetting 13 % of U.S. fossil fuel greenhouse gas emissions) to a source. Carbon losses from disturbances in western U.S. forests (insects, wildfire) may be partially offset by increased growth in the East, where water is sufficient and elevated atmospheric carbon dioxide (CO2) and N deposition promote tree growth. Habitat for some tree species will likely move northward and upward in elevation, and the movement of suitable habitat may be faster than species can disperse to the new habitats. Direct and indirect effects of climate change will affect the hydrologic cycle. The effects of elevated CO2 on transpiration will likely be less than ± 10 %, a relatively small change compared to the effects of precipitation variability on transpiration. More frequent droughts will probably reduce streamflow, and concentrating precipitation in intense storms will likely increase the risk of erosion and landslides. Tree mortality from disturbances will likely increase runoff, and decreased snow cover depth, duration, and extent will advance the timing of runoff. Some effects, like the response of mature trees to elevated CO2, are difficult to project because current empirical data and modeling are inadequate. The effects of climate change on forest ecosystems can be projected with some confidence at regional scales, although projecting changes at smaller spatial scales (e.g., watersheds) or for individual tree species will be challenging because of the complexity and variability of biophysical interactions at specific locations.

Keywords

  • Ecosystem Service
  • Suitable Habitat
  • Tree Mortality
  • Species Distribution Model
  • Storage Rate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-7515-2_3
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-7515-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5

References

  • Adams, H. D., Guardiola-Claramonte, M., Barron-Gafford, G. A., et al. (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences, USA, 106, 7063–7066.

    CAS  Google Scholar 

  • Adams, H. D., Luce, C. H., Breshears, D. D., et al. (2012). Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses. Ecohydrology, 5, 145–149.

    Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.

    Google Scholar 

  • Anderegg, R. L., Berry, J. A., Smith, D. D., et al. (2011). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences, USA, 109, 233–237.

    Google Scholar 

  • Arend, M., Kuster, T., Günthardt-Goerg, M. S., & Dobbertin, M. (2011). Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology, 31, 287–297.

    Google Scholar 

  • Asshoff, R., Zotz, G., & Körner, C. G. (2006). Growth and phenology of mature temperate forest trees in elevated CO2. Global Change Biology, 12, 848–861.

    Google Scholar 

  • Augspurger, C. K. (2009). Spring 2007 warmth and frost: Phenology, damage and refoliation in a temperate deciduous forest. Functional Ecology, 23, 1031–1039.

    Google Scholar 

  • Bachelet, D., Neilson, R. P., Hickler, T., et al. (2003). Simulating past and future dynamics of natural ecosystems in the United States. Global Biogeochemical Cycles, 17, 14-1–14-21.

    Google Scholar 

  • Bader, M. K.-F., & Körner, C. (2010). No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. Global Change Biology, 16, 2830–2843.

    Google Scholar 

  • Bader, M., Hiltbrunner, E., & Körner, C. (2009). Fine root responses of mature deciduous forest trees to free air carbon dioxide enrichment (FACE). Functional Ecology, 23, 913–921.

    Google Scholar 

  • Barford, C. C., Wofsy, S. C., Goulden, M. L., et al. (2001). Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688–1691.

    CAS  Google Scholar 

  • Barnett, T. P., Pierce, D. W., Hildago, H. G., et al. (2008). Human-induced changes in the hydrology of the Western United States. Science, 319, 1080–1083.

    CAS  Google Scholar 

  • Baron, J. S., Schmidt, T. W., & Hartman, M. D. (2009). Climate-induced changes in high elevation stream nitrate dynamics. Global Change Biology, 15, 1777–1789.

    Google Scholar 

  • Beckage, B., Osborne, B., Gavin, D. G., et al. (2008). A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences, USA, 105, 4197–4202.

    CAS  Google Scholar 

  • Bernhardt, E. S., Barber, J. J., Pippen, J. S., et al. (2006). Long-term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochemistry, 77, 91–116.

    Google Scholar 

  • Boisvenue, C., & Running, S. W. (2010). Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century. Ecological Applications, 20, 1302–1319.

    Google Scholar 

  • Bolstad, P. V., Davis, K. J., Martin, J., et al. (2004). Component and whole-system respiration fluxes in northern deciduous forests. Tree Physiology, 24, 493–504.

    CAS  Google Scholar 

  • Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449.

    CAS  Google Scholar 

  • Bonan, G. B., Levis, S., Sitch, S., et al. (2003). A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biology, 9, 1543–1566.

    Google Scholar 

  • Bonnet, V. H., Schoettle, A. W., & Shepperd, W. D. (2005). Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa. Canadian Journal of Forest Research, 35, 37–47.

    Google Scholar 

  • Boon, S. (2012). Snow accumulation following forest disturbance. Ecohydrology, 5, 279–285.

    Google Scholar 

  • Breshears, D. D., Cobb, N. S., Rich, P. M., et al. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences, USA, 102, 15144–15148.

    CAS  Google Scholar 

  • Bronson, D. R., Gower, S. T., Tanner, M., & Van Herk, I. (2009). Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Global Change Biology, 15, 1534–1543.

    Google Scholar 

  • Brooks, P. D., Troch, P. A., Durcik, M., et al. (2011). Quantifying regional scale ecosystem response to changes in precipitation: Not all rain is created equal. Water Resources Research, 47, W00J08.

    Google Scholar 

  • Brookshire, E. N. J., Gerber, S., Webster, J. R., et al. (2011). Direct effects of temperature on forest nitrogen cycling revealed through analysis of long-term watershed records. Global Change Biology, 17, 297–208.

    Google Scholar 

  • Butler, B. J., Tyrrell, M., Feinberg, G., et al. (2007). Understanding and reaching family forest owners: Lessons from social marketing research. Journal of Forestry, 105, 348–357.

    Google Scholar 

  • Butler, M. P., Davis, K. J., Denning, A. S., & Kawa, S. R. (2010). Using continental observations in global atmospheric inversions of CO2: North American carbon sources and sinks. Tellus Series B-Chemical and Physical Meteorology, 62, 550–572.

    Google Scholar 

  • Cai, T. E. B., Flanagan, L. B., & Syed, K. H. (2010). Warmer and drier conditions stimulate respiration more than photosynthesis in a boreal peatland ecosystem: Analysis of automatic chambers and eddy covariance measurements. Plant, Cell and Environment, 33, 394–407.

    CAS  Google Scholar 

  • Campbell, J. L., Rustad, L. E., Boyer, E. W., et al. (2009). Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Canadian Journal of Forest Research, 39, 264–284.

    CAS  Google Scholar 

  • Cech, P. G., Pepin, S., & Körner, C. (2003). Elevated CO2 reduces sap flux in mature deciduous forest trees. Oecologia, 137, 258–268.

    Google Scholar 

  • Chen, P. Y., Welsh, C., & Hamann, A. (2010). Geographic variation in growth response of Douglas-fir to interannual climate variability and projected climate change. Global Change Biology, 16, 3374–3385.

    Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., et al. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–1026.

    CAS  Google Scholar 

  • Christensen, L., Tague, C. L., & Baron, J. S. (2008). Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem. Hydrological Processes, 22, 3576–3588.

    Google Scholar 

  • Churkina, G., Brovkin, V., von Bloh, K., et al. (2009). Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming. Global Biogeochemical Cycles, 23, GB4027.

    Google Scholar 

  • Clark, J. S., Lewis, M., McLachlan, J. S., & HilleRisLambers, J. (2003). Estimating population spread: What can we forecast and how well? Ecology, 84, 1979–1988.

    Google Scholar 

  • Clark, J. S., Bell, D. M., Hersh, M. H., & Nichols, L. (2011). Climate change vulnerability of forest biodiversity: Climate and resource tracking of demographic rates. Global Change Biology, 17, 1834–1849.

    Google Scholar 

  • Cole, C. T., Anderson, J. E., Lindroth, R. L., & Waller, D. M. (2010). Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides). Global Change Biology, 16, 2186–2197.

    Google Scholar 

  • Crevoisier, C., Sweeney, C., Gloor, M., et al. (2010). Regional U.S. carbon sinks from three-dimensional atmospheric CO2 sampling. Proceedings of the National Academy of Sciences, USA, 107, 18348–18353.

    CAS  Google Scholar 

  • Davis, M. B. (1989). Lags in vegetation response to greenhouse warming. Climatic Change, 15, 75–82.

    Google Scholar 

  • Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to quaternary climate change. Science, 292, 673–679.

    CAS  Google Scholar 

  • De Vries, W. (2009). Assessment of the relative importance of nitrogen deposition and climate change on the sequestration of carbon by forests in Europe: An overview. Forest Ecology and Management, 258, vii–x.

    Google Scholar 

  • Dietze, M. C., & Moorcroft, P. R. (2011). Tree mortality in the eastern and central United States: Patterns and drivers. Global Change Biology, 17, 3312–3326.

    Google Scholar 

  • Dobrowski, S. Z., Thorne, J. H., Greenberg, J. A., et al. (2011). Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits. Ecological Monographs, 81, 241–257.

    Google Scholar 

  • Easterling, D. R., Meehl, G. A., Parmesan, C., et al. (2000b). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074.

    CAS  Google Scholar 

  • Ellis, T., Hill, P. W., Fenner, N., et al. (2009). The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog. Ecological Engineering, 35, 978–986.

    Google Scholar 

  • Enquist, B. J., Brown, J. H., & West, G. B. (1998). Allometric scaling of plant energetics and population density. Nature, 395, 163–165.

    CAS  Google Scholar 

  • Farley, K. A., Jobbágy, E. G., & Jackson, R. B. (2005). Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 11, 1565–1576.

    Google Scholar 

  • Fenner, N., Ostle, N. J., McNamara, N., et al. (2007). Elevated CO2 effects on peatland plant community carbon dynamics and DOC production. Ecosystems, 10, 635–647.

    CAS  Google Scholar 

  • Finzi, A. C., Moore, D. J. P., DeLucia, E. H., et al. (2006). Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology, 87, 15–25.

    Google Scholar 

  • Ford, C. R., Hubbard, R. M., & Vose, J. M. (2011). Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians. Ecohydrology, 4, 183–195.

    Google Scholar 

  • Franklin, J. (2009). Mapping species distributions: spatial inference and prediction (338pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Franks, P. J., & Beerling, D. J. (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences. USA, 106, 10343–10347.

    CAS  Google Scholar 

  • Friend, A. D. (2010). Terrestrial plant production and climate change. Journal of Experimental Botany, 61, 1293–1309.

    CAS  Google Scholar 

  • Froberg, M., Hanson, P. J., Todd, D. E., & Johnson, D. W. (2008). Evaluation of effects of sustained decadal precipitation manipulations on soil carbon stocks. Biogeochemistry, 89, 151–161.

    Google Scholar 

  • Garten, C. T., Iversen, C. M., & Norby, R. J. (2011). Litterfall 15N abundance indicates declining soil nitrogen availability in a free-air CO2 enrichment experiment. Ecology, 92, 133–139.

    Google Scholar 

  • Gedney, N., Cox, P. M., Betts, R. A., et al. (2006). Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439, 835–838.

    CAS  Google Scholar 

  • Gerten, D., Luo, Y., Le Marie, G., et al. (2008). Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 14, 1–15.

    Google Scholar 

  • Grant, R. F., Black, T. A., Gaumont-Guay, D., et al. (2006). Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical ordsbi with Ecosys. Agricultural and Forest Meteorology, 140, 152–170.

    Google Scholar 

  • Gray, L. K., Gylander, T., Mbogga, M. S., et al. (2011). Assisted migration to address climate change: Recommendations for aspen reforestation in western Canada. Ecological Applications, 21, 1591–1603.

    Google Scholar 

  • Groisman, P. Y., Knight, R. W., Karl, T. R., et al. (2004). Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. Journal of Hydrometeorology, 5, 64–85.

    Google Scholar 

  • Gu, L., Hanson, P. J., Post, W. M., et al. (2008). The 2007 eastern U.S. spring freeze: Increased cold damage in a warming world? BioScience, 58, 253–262.

    Google Scholar 

  • Gunderson, C. A., Edwards, N. T., Walker, A. V., et al. (2012). Forest phenology and a warmer climate—Growing season extension in relation to climatic provenance. Global Change Biology, 18, 2008–2025.

    Google Scholar 

  • Haire, S. L., & McGarigal, K. (2010). Effects of landscape patterns of fire severity on regenerating ponderosa pine forests (Pinus ponderosa) in New Mexico and Arizona, USA. Landscape Ecology, 25, 1055–1069.

    Google Scholar 

  • Hänninen, H., & Tanino, K. (2011). Tree seasonality in a warming climate. Trends in Plant Science, 16, 412–416.

    Google Scholar 

  • Hänninen, H., Slaney, M., & Linder, S. (2007). Dormancy release of Norway spruce under climatic warming: Testing ecophysiological models of bud burst with a whole-tree chamber experiment. Tree Physiology, 27, 291–300.

    Google Scholar 

  • Hanson, P. J., Wullschleger, S. D., & Norby, R. J. (2005). Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: Incorporating experimental results into model simulations. Global Change Biology, 11, 1402–1423.

    Google Scholar 

  • Hanson, P. J., Tschaplinski, T. J., Wullschleger, S. D., et al. (2007). The resilience of upland-oak forest canopy trees to chronic and acute precipitation manipulations. In D. S. Buckley & W. K. Clatterbuck (Eds.), Proceedings 15th central hardwood forest conference (E-General Technical Report SRS-101, pp. 3–12). Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station.

    Google Scholar 

  • Hardy, C. C. (2005). Wildland fire hazard and risk: Problems, definitions, and context. Forest Ecology and Management, 211, 73–82.

    Google Scholar 

  • Heijmans, M. M. P. D., Mauquoy, D., van Geel, B., & Berendse, F. (2008). Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. Journal of Vegetation Science, 19, 307–320.

    Google Scholar 

  • Hoegh-Guldberg, O., Hughes, L., McIntyre, S., et al. (2008). Assisted colonization and rapid climate change. Science, 321, 345–346.

    CAS  Google Scholar 

  • Hofmockel, K. S., Zak, D. R., Moran, K. K., & Jastrow, J. D. (2011). Changes in forest soil organic matter pools after a decade of elevated CO2 and O3. Soil Biology and Biochemistry, 43, 1518–1527.

    CAS  Google Scholar 

  • Holden, Z. A., Luce, C. H., Crimmins, M. A., & Morgan, P. (2011). Wildfire extent and severity correlated with annual streamflow distribution and timing in the Pacific Northwest, USA (1984–2005). Ecohydrology. doi:10.1002/eco.257.

    Google Scholar 

  • Holmes, T. P., Liebhold, A. M., Kovacs, K. F., & Von Holle, B. (2010). A spatial-dynamic value transfer model of economic losses from a biological invasion. Ecological Economics, 70, 86–95.

    Google Scholar 

  • Holzinger, B., Hülber, K., Camenisch, M., & Grabherr, G. (2008). Changes in plant species richness over the last century in the eastern Swiss Alps: Elevational gradient, bedrock effects and migration rates. Plant Ecology, 195, 179–196.

    Google Scholar 

  • Hu, J., Moore, D. J. P., Burns, S. P., & Monson, R. K. (2010). Longer growing seasons lead to less carbon sequestration by a subalpine forest. Global Change Biology, 16, 771–783.

    Google Scholar 

  • Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319, 83–95.

    Google Scholar 

  • Ibáñez, I., Clark, J. S., Dietze, M. C., et al. (2006). Predicting biodiversity change: Outside the envelope, beyond the species-area curve. Ecology, 87, 1896–1906.

    Google Scholar 

  • World Resources Institute. (2005). Ecosystems and human well-being: opportunities and challenges for business and industry (31p). Washington, DC: World Resources Institute.

    Google Scholar 

  • Ise, T., Dunn, A. L., Wofsy, S. C., & Moorcroft, P. R. (2008). High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience, 1, 763–766.

    CAS  Google Scholar 

  • Iverson, L. R., & Prasad, A. M. (2001). Potential changes in tree species richness and forest community types following climate change. Ecosystems, 4, 186–199.

    CAS  Google Scholar 

  • Iverson, L. R., Schwartz, M. W., & Prasad, A. M. (2004a). How fast and far might tree species migrate under climate change in the eastern United States? Global Ecology and Biogeography, 13, 209–219.

    Google Scholar 

  • Iverson, L. R., Schwartz, M. W., & Prasad, A. M. (2004b). Potential colonization of new available tree species habitat under climate change: An analysis for five eastern U.S. species. Landscape Ecology, 19, 787–799.

    Google Scholar 

  • Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254, 390–406.

    Google Scholar 

  • Jackson, R. B., Jobbágy, E. G., Avissar, R., et al. (2005). Trading water for carbon with biological carbon sequestration. Science, 310, 1944–1947.

    CAS  Google Scholar 

  • Janssens, I. A., Dieleman, W., Luyssaert, S., et al. (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315–322.

    CAS  Google Scholar 

  • Johnson, D. W. (2006). Progressive N limitation in forests: Review and implications for long-term responses to elevated CO2. Ecology, 87, 64–75.

    Google Scholar 

  • Johnson, D. W., Todd, D. E., & Hanson, P. J. (2008). Effects of throughfall manipulation on soil nutrient status: Results of 12 years of sustained wet and dry treatments. Global Change Biology, 14, 1661–1675.

    Google Scholar 

  • Joyce, L. A., Blate, G. M., Littell, J. S., et al. (2008). National forests. In S. J. Julius & J. M. West (Eds.), Preliminary review of adaptation options for climate-sensitive ecosystems and resources (pp. 3-1–3-127). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Karnosky, D. F., Pregitzer, K. S., Zak, D. R., et al. (2005). Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment, 28, 965–981.

    CAS  Google Scholar 

  • Katul, G. G., Porporato, A., Nathan, R., et al. (2005). Mechanistic analytical models for long-distance seed dispersal by wind. The American Naturalist, 166, 368–381.

    CAS  Google Scholar 

  • Knoepp, J. D., Vose, J. M., Clinton, B. D., & Hunter, M. D. (2011). Hemlock infestation and mortality: Impacts on nutrient pools and cycling in Appalachian forests. Soil Science Society of America Journal, 75, 1935–1945.

    CAS  Google Scholar 

  • Körner, C., Asshoff, R., Bignucolo, O., et al. (2005). Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 309, 1360–1362.

    Google Scholar 

  • Koven, C. D., Ringeval, B., Friedlingstein, P., et al. (2011). Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences, USA, 108, 14769–14774.

    CAS  Google Scholar 

  • Kreyling, J., Bittner, T., Jaeschke, A., et al. (2011). Assisted colonization: A question of focal units and recipient localities. Restoration Ecology, 19, 433–440.

    Google Scholar 

  • Kunkel, K. E., Easterling, D. R., Hubbard, K., & Redmond, K. (2004). Temporal variations in frost-free season in the United States: 1895–2000. Geophysical Research Letters, 31, L03201.

    Google Scholar 

  • Kutsch, W. L., Kolle, O., Rebmann, C., et al. (2008). Advection and resulting CO2 exchange uncertainty in a tall forest in central Germany. Ecological Applications, 18, 1391–1405.

    Google Scholar 

  • Labat, D., Goddéris, Y., Probst, J. L., & Guyot, J. L. (2004). Evidence for global runoff increase related to climate warming. Advances in Water Resources, 27, 631–642.

    Google Scholar 

  • Lammertsma, E. I., de Boer, H. J., Dekker, S. C., et al. (2011). Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences, USA, 108, 4035–4040.

    CAS  Google Scholar 

  • Lawler, J. J., White, D., Neilson, R. P., & Blaustein, A. R. (2006). Predicting climate-induced range shifts: Model differences and model reliability. Global Change Biology, 12, 1568–1584.

    Google Scholar 

  • Lenoir, J., Gégout, J. C., Marquet, P. A., et al. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320, 1768–1771.

    CAS  Google Scholar 

  • Leuzinger, S., & Körner, C. (2007). Water savings in mature deciduous forest trees under elevated CO2. Global Change Biology, 13, 2498–2508.

    Google Scholar 

  • Leuzinger, S., & Körner, C. (2010). Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest. Global Change Biology, 16, 246–254.

    Google Scholar 

  • Little, E. L. (1971). Atlas of United States trees, Vol. 1, conifers and important hardwoods (Misc. Pub. 1146). Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

  • Loarie, S. R., Duffy, P. B., Hamilton, H., et al. (2009). The velocity of climate change. Nature, 462, 1052–1055.

    CAS  Google Scholar 

  • Lovett, G. M., & Mitchell, M. J. (2004). Sugar maple and nitrogen cycling in the forests of eastern North America. Frontiers in Ecology and the Environment, 2, 81–88.

    Google Scholar 

  • Lovett, G. M., Christenson, L. M., Groffman, P. M., et al. (2002). Insect defoliation and nitrogen cycling in forests. BioScience, 52, 335–341.

    Google Scholar 

  • Lovett, G. M., Canham, C. D., Arthur, M. A., et al. (2006). Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience, 56, 395–405.

    Google Scholar 

  • Lovett, G. M., Arthur, M. A., Weathers, K. C., & Griffin, J. M. (2010). Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems, 13, 1188–1200.

    CAS  Google Scholar 

  • Luce, C. H., & Holden, Z. A. (2009). Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophysical Research Letters, 36, L16401.

    Google Scholar 

  • Lukac, M., Lagomarsino, W., Moscatelli, M. C., et al. (2009). Forest soil carbon cycle under elevated CO2—A case of increased throughput? Forestry, 82, 75–86.

    Google Scholar 

  • Luo, Y. Q., Gerten, D., Le Maire, G., et al. (2008). Modeled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 14, 1986–1999.

    Google Scholar 

  • McDowell, N. G. (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051–1059.

    CAS  Google Scholar 

  • McDowell, N., Pockman, W. T., Allen, C. D., et al. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719–739.

    Google Scholar 

  • McKenney, D. W., Pedlar, J. H., Rood, R. B., & Price, D. (2011). Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biology, 17, 2720–2730.

    Google Scholar 

  • McKinley, D. C., & Blair, J. M. (2008). Woody plant encroachment by Juniperus virginiana in a mesic native grassland promotes rapid carbon and nitrogen accrual. Ecosystems, 11, 454–468.

    CAS  Google Scholar 

  • McKinley, D. C., Ryan, M. G., Birdsey, R. A., et al. (2011). A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 21, 1902–1924.

    Google Scholar 

  • McLachlan, J. S., Hellmann, J. J., & Schwartz, M. W. (2007). A framework for debate of assisted migration in an era of climate change. Conservation Biology, 21, 297–302.

    Google Scholar 

  • Meinzer, F. C., Bond, B. J., Warren, J. M., & Woodruff, D. R. (2005). Does water transport scale universally with tree size? Functional Ecology, 19, 558–565.

    Google Scholar 

  • Melillo, J. M., Steudler, P. A., Aber, J. D., et al. (2002). Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173–2176.

    CAS  Google Scholar 

  • Melillo, J. M., Butler, S., Johnson, J., et al. (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences, USA, 108, 9508–9512. 620pp.

    CAS  Google Scholar 

  • Metsaranta, J. M., Kurz, W. A., Neilson, E. T., & Stinson, G. (2010). Implications of future disturbance regimes on the carbon balance of Canada’s managed forest (2010–2100). Tellus Series B-Chemical and Physical Meteorology, 62, 719–728.

    Google Scholar 

  • Minteer, B. A., & Collins, J. P. (2010). Move it or lose it? The ecological ethics of relocating species under climate change. Ecological Applications, 20, 1801–1804.

    Google Scholar 

  • Mote, P. W., Hamlet, A. F., Clark, M. P., & Lettenmaier, D. P. (2005). Declining mountain snowpack in western North America. Bulletin of the American Meteorological Society, 86, 39–49.

    Google Scholar 

  • Nathan, R., Horvitz, N., He, Y., et al. (2011). Spread of North American wind-dispersed trees in future environments. Ecology Letters, 14, 211–219.

    Google Scholar 

  • Neilson, R. P., Pitelka, L. F., Solomon, A. M., et al. (2005). Forecasting regional to global plant migration in response to climate change. Bioscience, 55, 749–759.

    Google Scholar 

  • Norby, R. J., & Zak, D. R. (2011). Ecological lessons learned from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution, and Systematics, 42, 181–203.

    Google Scholar 

  • Norby, R. J., DeLucia, E. H., Gielen, B., et al. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA, 102, 18052–18056.

    CAS  Google Scholar 

  • Norby, R. J., Warren, J. M., Iversen, C. M., et al. (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences, USA, 107, 19368–19373.

    CAS  Google Scholar 

  • Ollinger, S., Goodale, C., Hayhoe, K., & Jenkins, J. (2008). Potential effects of climate change and rising CO2 on ecosystem processes in northeastern U.S. forests. Mitigation and Adaptation Strategies for Global Change, 14, 101–106.

    Google Scholar 

  • Orwig, D. A., Cobb, R. C., D’Amato, A. W., et al. (2008). Multi-year ecosystem response to hemlock woolly adelgid infestation in southern New England forests. Canadian Journal of Forest Research, 38, 834–843.

    Google Scholar 

  • Pacala, S. W., Hurtt, G. C., Baker, D., et al. (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292, 2316–2320.

    CAS  Google Scholar 

  • Pagano, T., & Garen, D. (2005). A recent increase in Western U.S. streamflow variability and persistence. Journal of Hydrometeorology, 6, 173–179.

    Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    CAS  Google Scholar 

  • Parmesean, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 521, 37–42.

    Google Scholar 

  • Pearson, R. G., Thuiller, W., Araújo, M. B., et al. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711.

    Google Scholar 

  • Pinsonneault, A. J., Matthews, H. D., & Kothavala, Z. (2011). Benchmarking climate-carbon model simulations against forest FACE data. Atmosphere and Ocean, 49, 41–50.

    CAS  Google Scholar 

  • Prasad, A. M., & Iverson, L. R. (1999). A climate change atlas for 80 forest tree species of the eastern United States Spatial database. Delaware: U.S. Department of Agriculture Forest Service, Northeastern Research Station. http://www.fs.fed.us/ne/delaware/atlas/index.html.

  • Prentice, I. C., & Harrison, S. P. (2009). Ecosystem effects of CO2 concentration: Evidence from past climates. Climate of the Past, 5, 297–307.

    Google Scholar 

  • Pugh, E., & Small, E. (2011). The impact of pine beetle infestation on snow accumulation and melt in the headwaters of the Colorado River. Ecohydrology. doi:10.1002/eco.239.

    Google Scholar 

  • Pye, J. M., Holmes, T. P., Prestemon, J. P., & Wear, D. N. (2011). Economic impacts of the southern pine beetle. In R. N. Coulson & K. D. Klepzig (Eds.), Southern pine beetle II (Gen. Tech. Rep. SRS-140, pp. 213–222). Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station.

    Google Scholar 

  • Ravenscroft, C., Scheller, R. M., Mladenoff, D. J., & White, M. A. (2010). Forest restoration in a mixed-ownership landscape under climate change. Ecological Applications, 20, 327–346.

    Google Scholar 

  • Regonda, S. K., Rajagopalan, B., Clark, M., & Pitlick, J. (2005). Seasonal cycle shifts in hydroclimatology over the Western United States. Journal of Climate, 18, 372–384.

    Google Scholar 

  • Ricciardi, A., & Simberloff, D. (2009). Assisted colonization is not a viable conservation strategy. Trends in Ecology and Evolution, 24, 248–253.

    Google Scholar 

  • Rustad, L. E., Campbell, J. L., Marion, G. M., et al. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental warming. Oecologia, 126, 543–562.

    Google Scholar 

  • Ryan, M. G., Archer, S. R., Birdsey, R. A., et al. (2008). Land resources: Forest and arid lands. In P. Backlund, A. Janetos, D. Schimel, et al., conv. lead authors (Eds.), The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. Synthesis and assessment product 4.3 (pp. 75–120). Washington, DC: U.S. Climate Change Science Program.

    Google Scholar 

  • Schwartz, M. D., & Hanes, J. M. (2010). Continental-scale phenology: Warming and chilling. International Journal of Climatology, 30, 1595–1598.

    Google Scholar 

  • Smithwick, E. A. H., Ryan, M. G., Kashian, D. M., et al. (2009). Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands. Global Change Biology, 15, 535–548.

    Google Scholar 

  • Solomon, S., Qin, D., Manning, M., et al. (2007). Climate change 2007: The physical science basis—Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (996pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Stadler, B., Müller, T., & Orwig, D. (2006). The ecology of energy and nutrient fluxes in hemlock forests invaded by hemlock woolly adelgid. Ecology, 87, 1792–1804.

    Google Scholar 

  • Stoy, P. C., Katul, G. G., Siqueira, M. B. S., et al. (2006). Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Global Change Biology, 12, 2115–2135.

    Google Scholar 

  • Tague, C. L., & Band, L. E. (2004). RHESSys: Regional hydro-ecologic simulation system: An object-oriented approach to spatially distributed modeling of carbon, water, and nutrient cycling. Earth Interactions, 8, 1–42.

    Google Scholar 

  • Tague, C., Seaby, L., & Hope, A. (2009). Modeling the eco-hydrologic response of a Mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies. Climatic Change, 93, 137–155.

    CAS  Google Scholar 

  • Tchakerian, M. D., & Couslon, R. N. (2011). Ecological impacts of southern pine beetle. In R. N. Coulson & K. D. Klepzig (Eds.), Southern pine beetle II (Gen. Tech. Rep. SRS-140, pp. 223–234). Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station.

    Google Scholar 

  • Thuiller, W., Albert, C., Araujo, M. B., et al. (2008). Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137–152.

    Google Scholar 

  • Troch, P. A., Martinez, G. F., Pauwels, V. R. N., et al. (2009). Climate and vegetation water use efficiency at catchment scales. Hydrological Processes, 23, 2409–2414.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). (2011). Draft inventory of U.S. greenhouse gas emissions and sinks: 1990–2009 (EPA 430-R-11-005). Washington, DC: United States Environmental Protection Agency, Office of Atmospheric Programs. http://epa.gov/climatechange/emissions/usinventoryreport.html. Accessed 12 Mar 2012.

  • Van Auken, O. W. (2000). Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics, 31, 197–215.

    Google Scholar 

  • van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., et al. (2009). Widespread increase of tree mortality rates in the Western United States. Science, 323, 521–524.

    Google Scholar 

  • Vitt, P., Havens, K., Kramer, A. T., et al. (2010). Assisted migration of plants: Changes in latitudes, changes in attitudes. Biological Conservation, 143, 18–27.

    Google Scholar 

  • Vose, J. M., & Ford, C. R. (2011). Early successional forest habitats and water resources. In C. H. Greenberg, B. Collins, F. R. Thompson, III (Eds.), Sustaining young forest communities: Ecology and management of early successional habitats in the central hardwood region, USA. New Springer Series: Managing forest ecosystems (Vol. 21, pp. 253–269, Chapter 14). New York: Springer.

    Google Scholar 

  • Walter, M. T., Wilks, D. S., Parlange, J.-Y., & Schneider, R. L. (2004). Increasing evapotranspiration from the conterminous United States. Journal of Hydrometeorology, 5, 405–408.

    Google Scholar 

  • Wang, M., Guan, D.-X., Han, S.-J., & Wu, J.-L. (2010). Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest. Tree Physiology, 30, 149–163.

    CAS  Google Scholar 

  • Warren, J. M., Pötzelsberger, E., Wullschleger, S. D., et al. (2011). Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2. Ecohydrology, 4, 196–210.

    Google Scholar 

  • Way, D. A., Ladeau, S. L., McCarthy, H. R., et al. (2010). Greater seed production in elevated CO2 is not accompanied by reduced seed quality in Pinus taeda L. Global Change Biology, 16, 1046–1056.

    Google Scholar 

  • Wear, D. N., Huggett, R., Li, R., et al. (2012). Forecasts of forest conditions in regions of the United States under future scenarios: A technical document supporting the Forest Service 2010 RPA assessment. Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station.

    Google Scholar 

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943.

    CAS  Google Scholar 

  • Westerling, A. L., Turner, M. G., Smithwick, E. A. H., et al. (2011). Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences, USA, 108, 13165–13170.

    CAS  Google Scholar 

  • Williams, M. W., Seibold, C., & Chowanski, K. (2009). Storage and release of solutes from a subalpine snowpack: Soil and streamwater response, Niwot Ridge, Colorado. Biogeochemistry, 95, 77–94.

    CAS  Google Scholar 

  • Woodall, C. W., Oswalt, C. M., et al. (2009). An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management, 257, 1434–1444.

    Google Scholar 

  • Woodbury, P. B., Smith, J. E., & Heath, L. S. (2007). Carbon sequestration in the U.S. forest sector from 1990 to 2010. Forest Ecology and Management, 241, 14–27.

    Google Scholar 

  • Wu, H. X., Ying, C. C., & Ju, H.-B. (2005). Predicting site productivity and pest hazard in lodgepole pine using biogeoclimatic system and geographic variables in British Columbia. Annals of Forest Science, 62, 31–42.

    Google Scholar 

  • Wullschleger, S. D., Hanson, P. J., & Todd, D. E. (2001). Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecology and Management, 143, 205–213.

    Google Scholar 

  • Xiao, J., Zhuang, Q., Law, B. E., et al. (2011). Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agricultural and Forest Meteorology, 151, 60–69.

    Google Scholar 

  • Zaehle, S., Ciais, P., Friend, A. D., & Prieur, V. (2011). Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geoscience, 4, 601–605.

    CAS  Google Scholar 

  • Zhang, X., Tarpley, D., & Sullivan, J. T. (2007). Diverse responses of vegetation phenology to a warming climate. Geophysical Research Letters, 34, L19405.

    Google Scholar 

  • Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940–943.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Vose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht (outside the USA)

About this chapter

Cite this chapter

Ryan, M.G. et al. (2014). Forest Processes. In: Peterson, D., Vose, J., Patel-Weynand, T. (eds) Climate Change and United States Forests. Advances in Global Change Research, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7515-2_3

Download citation