Field Applications of Automated Weed Control: Northwest Europe

  • Jan Willem Hofstee
  • Ard T. Nieuwenhuizen


In Northwest Europe there is high need for advanced weed control methods. The use of crop protection chemicals has become stricter, and integrated pest management is required by regulations from the European Union. This need has resulted in the development of several advanced weed control principles based on a combination of proven technologies in combination with decision systems. A major problem with full-field-based methods is that the required settings depend very much on the specific conditions. Use of decision systems helps to improve these methods. Emerging new technologies as machine vision and GPS enabled more precise methods focused on the interrow and intrarow zone and on the plant itself. Some of the methods have already achieved a high level of development and resulted in commercially available weed control equipment with sensors and actuators for precise control. This chapter discusses the advancements achieved in NW Europe on mechanical weed control (full field, interrow and intrarow), physical weed control (steaming and flaming) and chemical weed control (full field, spot and plant oriented).


Sugar Beet Weed Control Forward Speed Sugar Beet Plant Weed Seedling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ascard J, Hatcher PE, Melander B, Upadhyaya MK (2007) Thermal weed control. In: Upadhyaya MK, Blackshaw RE (eds) Non-chemical weed management: principles, concepts and technology. CABI, Wallingford, pp 155–175CrossRefGoogle Scholar
  2. Bàrberi P, Moonen AC, Peruzzi A, Fontanelli M, Raffaelli M (2009) Weed suppression by soil steaming in combination with activating compounds. Weed Res 49(1):55–66. doi: 10.1111/j.1365-3180.2008.00653.x CrossRefGoogle Scholar
  3. Beunk H (2011) Schoffelen op weg naar elektronische toekomst. Landbouwmechanisatie, vol 62. Agrimedia, WageningenGoogle Scholar
  4. Bleeker PO (2008) Schoffel Robrocrop ruimt onkruid in de rij op. Scholar
  5. Bonte E (2011) Garford Robocrop. Landbouwmechanisatie, vol 62. Agrimedia, WageningenGoogle Scholar
  6. Chicouene D (2007) Mechanical destruction of weeds. A review. Agron Sustain Dev 27(1):19–27. doi: 10.1051/agro:2006012 CrossRefGoogle Scholar
  7. Chikowo R, Faloya V, Petit S, Munier-Jolain NM (2009) Integrated Weed Management systems allow reduced reliance on herbicides and long-term weed control. Agric Ecosyst Environ 132(3–4):237–242. doi: 10.1016/j.agee.2009.04.009 CrossRefGoogle Scholar
  8. Christensen S, Søgaard HT, Kudsk P, Nørremark M, Lund I, Nadimi ES, Jørgensen R (2009) Site-specific weed control technologies. Weed Res 49(3):233–241. doi: 10.1111/j.1365-3180.2009.00696.x CrossRefGoogle Scholar
  9. Cloutier DC, van der Weide RY, Peruzzi A, Leblanc ML (2007) Mechanical weed management. In: Upadhyaya MK, Blackshaw RE (eds) Non-chemical weed management: principles, concepts and technology. CABI, Wallingford, pp 111–135CrossRefGoogle Scholar
  10. Dedousis AP, Godwin RJ (2005) Precision mechanical weed control. European Weed Research Society, DoorwerthGoogle Scholar
  11. Dedousis AP, Godwin RJ (2008) The rotating disc-hoe-an overview of the system for mechanical weed control. In: American Society of Agricultural and Biological Engineers annual international meeting 2008, Providence, RI, pp 451–463Google Scholar
  12. Duerinckx K, Mouazen AM, Anthonis J, Ramon H (2005) Effects of spring-tine settings and operational conditions on the mechanical performance of a weed harrow tine. Biosyst Eng 91(1):21–34. doi: 10.1016/j.biosystemseng.2005.02.005 CrossRefGoogle Scholar
  13. European Commission (2009) Directive number 128 of 2009. Off J Eur Union L 309:16Google Scholar
  14. Evert FK van, Polder G, van Der Heijden GWAM, Kempenaar C, Lotz LAP (2009) Real-time vision-based detection of Rumex obtusifolius in grassland. Weed Res 49(2):164–174. doi: 10.1111/j.1365-3180.2008.00682.x CrossRefGoogle Scholar
  15. Evert FK van, Samsom J, Polder G, Vijn M, H-Jv D, Lamaker A, van der Heijden GWAM, Kempenaar C, van der Zalm T, Lotz LAP (2011) A robot to detect and control broad-leaved dock (Rumex obtusifolius L.) in grassland. J Fld Robot 28(2):264–277. doi: 10.1002/rob.20377 Google Scholar
  16. Ferrero A, Busi R, Tesio F, Vidotto F (2007) Weed control by mechanical means in organic soybean and maize. European Weed Research Society, DoorwerthGoogle Scholar
  17. Gerhards R, Christensen S (2003) Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley. Weed Res 2003(43):385–392CrossRefGoogle Scholar
  18. Gerhards R, Oebel H (2006) Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Res (Oxf) 46(3):185–193. doi: 10.1111/j.1365-3180.2006.00504.x CrossRefGoogle Scholar
  19. Griepentrog HW, Nørremark M, Nielsen H, Blackmore BS (2005) Seed mapping of sugar beet. Precis Agric 6(2):157–165. doi: 10.1007/s11119-005-1032-5 CrossRefGoogle Scholar
  20. Gude J, Damerow L, Schulze-Lammers P (2010) Weeding by laser application. Paper presented at the third conference on precision crop protection, BonnGoogle Scholar
  21. Heisel T, Schou J, Christensen S, Andreasen C (2001) Cutting weeds with a CO2 laser. Weed Res 41(1):19–29. doi: 10.1046/j.1365-3180.2001.00212.x CrossRefGoogle Scholar
  22. Hemming J, Nieuwenhuizen AT, Struik LE (2011) Image analysis system to determine crop row and plant positions for an intra-row weeding machine. In: CIGR, Funabori, Japan, 19–23 Sept 2011, p 7Google Scholar
  23. Kempenaar C, Spijker JH (2004) Weed control on hard surfaces in The Netherlands. Pest Manag Sci 60(6):595–599. doi: 10.1002/ps.863 PubMedCrossRefGoogle Scholar
  24. Kempenaar C, Lotz LAP, Snel JFH, Smutny V, Zhang HJ (2011) Predicting herbicidal plant mortality with mobile photosynthesis meters. Weed Res 51(1):12–22. doi: 10.1111/j.1365-3180.2010.00823.x CrossRefGoogle Scholar
  25. Kropff MJ, Bastiaans L, Kempenaar C, Van Der Weide RY (2008) The changing role of agriculture and tomorrow’s weed research agenda. J Plant Dis Prot 21:3–8Google Scholar
  26. Kurstjens DAG (2007) Precise tillage systems for enhanced non-chemical weed management. Soil Tillage Res 97(2):293–305. doi: 10.1016/j.still.2006.06.011 CrossRefGoogle Scholar
  27. Lund I, Sogaard HT, Graglia E (2006) Micro-spraying with one drop per weed plant. Danish Institute of Agricultural Sciences, TjeleGoogle Scholar
  28. Lund I, Jensen PK, Olsen HJ (2008) Aspects of spraying small geometric cells. In: Alexander LS, Carpenter PI, Cooper SE et al (eds) International advances in pesticide application, Robinson College, Cambridge, UK, 9–11 January 2008, Aspects of applied biology 84. Association of Applied Biologists, Wellesbourne, pp 273–278Google Scholar
  29. Lundkvist A (2009) Effects of pre- and post-emergence weed harrowing on annual weeds in peas and spring cereals. Weed Res 49(4):409–416. doi: 10.1111/j.1365-3180.2009.00718.x CrossRefGoogle Scholar
  30. Malkomes HP, Zwerger P (2007) Influence of soil disinfection methods on the weed seed potential and on microbial activities in the soil (Einfluss von Umweltfaktoren auf die Samenphase annueller Unkrßuter insbesondere unter dem Gesichtspunkt der Unkrautbekämpfung). Gesunde Pflanzen 59(2):77–86. doi: 10.1007/s10343-007-0150-6 CrossRefGoogle Scholar
  31. Melander B, Kristensen JK (2011) Soil steaming effects on weed seedling emergence under the influence of soil type, soil moisture, soil structure and heat duration. Ann App Biol 158(2):194–203. doi: 10.1111/j.1744-7348.2010.00453.x CrossRefGoogle Scholar
  32. Melander B, Rasmussen IA, Bàrberi P (2005) Integrating physical and cultural methods of weed control-examples from European research. Weed Sci 53(3):369–381. doi: 10.1614/ws-04-136r CrossRefGoogle Scholar
  33. Merfield CN (2010) Precision Ag for ecological farming systems. In: LandWISE conference 2010: know your farm – with precision Ag. LandWISE Inc., Havelock North, 12–13 May 2010Google Scholar
  34. Miller PCH, Lutman PJW (2008) A review of the factors influencing the technical feasibility and potential commercial uptake of the patch spraying of herbicides in arable crops. In: Alexander LS, Carpenter PI, Cooper SE et al (eds) International advances in pesticide application, Robinson College, Cambridge, UK, 9–11 January 2008, Aspects of applied biology 84. Association of Applied Biologists, Wellesbourne, pp 265–272Google Scholar
  35. Mouazen AM, Duerinckx K, Ramon H, Anthonis J (2007) Soil influences on the mechanical actions of a flexible spring tine during selective weed harrowing. Biosyst Eng 96(1):7–18. doi: 10.1016/j.biosystemseng.2006.09.007 CrossRefGoogle Scholar
  36. Nieuwenhuizen AT (2009) Automated detection and control of volunteer potato plants. Wageningen University, WageningenGoogle Scholar
  37. Nieuwenhuizen AT, Van Der Steen S, Hofstee JW, Van Henten EJ (2008) Real time vision detection of weed potato plants in sugar beet fields. In: Conference: agricultural engineering – Land-Technik 2008: Landtechnik regional und International, Stuttgart-Hohenheim, pp 173–178Google Scholar
  38. Nieuwenhuizen AT, Hofstee JW, van de Zande JC, Meuleman J, van Henten EJ (2010a) Classification of sugar beet and volunteer potato reflection spectra with a neural network and statistical discriminant analysis to select discriminative wavelengths. Comput Electron Agric 73(2):146–153. doi: 10.1016/j.compag.2010.05.008 CrossRefGoogle Scholar
  39. Nieuwenhuizen AT, Hofstee JW, van Henten EJ (2010b) Adaptive detection of volunteer potato plants in sugar beet fields. Precis Agric 11(5):433–447. doi: 10.1007/s11119-009-9138-9 CrossRefGoogle Scholar
  40. Nieuwenhuizen AT, Hofstee JW, van Henten EJ (2010c) Performance evaluation of an automated detection and control system for volunteer potatoes in sugar beet fields. Biosyst Eng 107(1):46–53CrossRefGoogle Scholar
  41. Nørremark M, Griepentrog HW, Nielsen J, Søgaard HT (2008) The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops. Biosyst Eng 101(4):396–410. doi: 10.1016/j.biosystemseng.2008.09.007 CrossRefGoogle Scholar
  42. Nørremark M, Swain KC, Melander B (2009) Advanced non-chemical and close to plant weed control system for organic agriculture. Paper presented at the international agricultural engineering conference, Bangkok, 7–10 Dec 2009Google Scholar
  43. O’Dogherty MJ, Godwin RJ, Dedousis AP, Brighton JL, Tillett ND (2007) A mathematical model of the kinematics of a rotating disc for inter- and intra-row hoeing. Biosyst Eng 96(2):169–179CrossRefGoogle Scholar
  44. Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43. doi: 10.1017/s0021859605005708 CrossRefGoogle Scholar
  45. Pardo G, Cirujeda A, Aibar J, Cavero J, Zaragoza C (2008) Weed harrowing in winter cereal under semi-arid conditions. Span J Agric Res 6(4):661–670CrossRefGoogle Scholar
  46. Pullen DWM, Cowell PA (2006) The effect of implement geometry on the hoe path of a steered rear-mounted inter-row weeder. Biosyst Eng 94(3):373–386. doi: 10.1016/j.biosystemseng.2006.03.011 CrossRefGoogle Scholar
  47. Rasmussen J, Bibby BM, Schou AP (2008) Investigating the selectivity of weed harrowing with new methods. Weed Res 48(6):523–532. doi: 10.1111/j.1365-3180.2008.00661.x CrossRefGoogle Scholar
  48. Rasmussen J, Mathiasen H, Bibby BM (2010) Timing of post-emergence weed harrowing. Weed Res 50(5):436–446. doi: 10.1111/j.1365-3180.2010.00799.x CrossRefGoogle Scholar
  49. Sartorato I, Zanin G, Baldoin C, De Zanche C (2006) Observations on the potential of microwaves for weed control. Weed Res 46(1):1–9. doi: 10.1111/j.1365-3180.2006.00484.x CrossRefGoogle Scholar
  50. Sogaard HT, Lund I (2007) Application accuracy of a machine vision-controlled robotic micro-dosing system. Biosyst Eng 96(3):315–322CrossRefGoogle Scholar
  51. Tillett ND, Hague T, Grundy AC, Dedousis AP (2008) Mechanical within-row weed control for transplanted crops using computer vision. Biosyst Eng 99(2):171–178CrossRefGoogle Scholar
  52. Wei D, Liping C, Zhijun M, Guangwei W, Ruirui Z (2010) Review of non-chemical weed management for green agriculture. Int J Agric Biol Eng 3(4):52–60. doi: 10.3965/j.issn.1934-6344.2010.04.052-060 Google Scholar
  53. Weide RY van der, Bleeker P, Molema GJ, Kurstjens DAG (2005a) Mechanical weed control in plant rows in 2005. (Onkruidbeheersing in Nederland, nut en noodzaak) [Dutch] (Mechanische onkruidbestrijding in de gewasrij anno 2005). Gewasbescherming 36(2):76–79Google Scholar
  54. Weide RY van der, Bleeker P, Molema GJ, Lotz LAP, Fogelberg F, Melander B (2005b) Innovation in mechanical weed control in crop rows. European Weed Research Society, DoorwerthGoogle Scholar
  55. Weide RY van der, Bleeker PO, Achten VTJM, Lotz LAP, Fogelberg F, Melander B (2008) Innovation in mechanical weed control in crop rows. Weed Res (Oxf) 48(3):215–224. doi: 10.1111/j.1365-3180.2008.00629.x CrossRefGoogle Scholar
  56. Weis M, Gutjahr C, Ayala VR, Gerhards R, Ritter C, Schölderle F (2008) Precision farming for weed management: techniques. Gesunde Pflanzen 60(4):171–181. doi: 10.1007/s10343-008-0195-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Farm Technology GroupWageningen University, RadixWageningenThe Netherlands
  2. 2.Plant Research International, Field Technology Innovations GroupWageningen UR, RadixWageningenThe Netherlands

Personalised recommendations