Skip to main content

Engineering Photobiological H2-Production

  • Chapter
  • First Online:
Algal Biorefineries

Abstract

Our dominant current fuel sources are consumed at a far greater rate than they are replenished, prompting a search for economically sustainable alternatives for the conversion of solar energy into infrastructure-compatible fuel. Di-hydrogen is an appealing energy carrier due to its chemical versatility and benign impact on the environment upon combustion. Here, we discuss current issues for utilization of photobiological organisms for the direct conversion of solar energy and water into H2. The focus is narrow, centering on cyanobacteria as the catalytic host, with a discussion on the (1) O2-sensitivity of proteins participating in H2-pathways, (2) incomplete oxidation of stored sugars under anoxic fermentative conditions in the dark, (3) thermodynamic limitations associated with NAD(P)H:H2-pathways, and (4) competition for electrons between H2-pathways and host metabolism. It is concluded that several possible scenarios exist without any clear ‘winner’ at this premature stage and that a broad spread of current research targets is most appropriate as opposed to any one single dominant path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[FeFe]:

iron-iron

[NiFe]:

nickel-iron

MBH:

membrane bound hydrogenase

FQR:

ferredoxin:quinone reductase

FNR:

ferredoxin:NAD(P)H oxidoreductase

NDH:

NADPH dehydrogenase

SDH:

succinate dehydrogenase

CET:

cyclic electron transfer

PMF:

proton motive force

References

  • Andersen KB, Meyenburg K von (1977) Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli. J Biol Chem 252:4151–4156

    PubMed  CAS  Google Scholar 

  • Antal T, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120

    Article  PubMed  CAS  Google Scholar 

  • Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrog Energy 34:615–627

    Article  CAS  Google Scholar 

  • Bandyopadhyay A, Stockel J, Min H, Sherman LA, Pakrasi H (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139

    Article  PubMed  Google Scholar 

  • Bar-Even A, Flamholz A, Noor E, Milo R (2012) Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 8:509–517

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  PubMed  CAS  Google Scholar 

  • Bernhard M, Buhrke T, Bleijlevens B, De Lacey AL, Fernandez VM, Albracht SP, Friedrich B (2001) The H2 sensor of Ralstonia eutropha. Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase. J Biol Chem 276:15592–15597

    Article  PubMed  CAS  Google Scholar 

  • Boddiger D (2007) Boosting biofuel crops could threaten food security. Lancet 370:923–924

    Article  PubMed  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    Article  PubMed  CAS  Google Scholar 

  • Brumaghim JL, Li Y, Henle E, Linn S (2003) Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III). J Biol Chem 278:42495–42504

    Article  PubMed  CAS  Google Scholar 

  • Burrows E, Wong W, Fern X, Chaplen F, Hely R (2009) Optimization of pH and nitrogen for enhanced hydrogen production by Synechocystis sp. PCC 6803 via statistical and machine learning methods. Biotechnol Prog 25:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Burrows EH, Chaplen FW, Ely RL (2011) Effects of selected electron transport chain inhibitors on 24-h hydrogen production by Synechocystis sp. PCC 6803. Bioresour Technol 102:3062–3070

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia AK, Apte SK (2011) Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential. Appl Environ Microbiol 77:395–399

    Article  PubMed  CAS  Google Scholar 

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  PubMed  CAS  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Cournac L, Gudeney G, Peltier G, Vignais P (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Dementin S, Leroux F, Counac L, De Lacey AL, Volbeda A, Leger C, Burlat B, Martinez N, Champ S, Martin L, Sanganas O, Haumann M, Fernandez VM, Guiliarelli B, Fontecilla-Camps JC, Rousset M (2009) Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. J Am Chem Soc 131:10156–10164

    Article  PubMed  CAS  Google Scholar 

  • Erbes DL, King D, Gibbs M (1979) Inactivation of hydrogenase in cell-free extracts and whole cells of Chlamydomonas reinhardi by oxygen. Plant Physiology 63:1138–1142

    Article  PubMed  CAS  Google Scholar 

  • Flamholz A, Noor E, Bar-Even A, Milo R (2012) eQuilibrator—the biochemical thermodynamics calculator. Nucleic Acids Res 40:D770–775

    Article  Google Scholar 

  • Fritsch J, Scheerer P, Frielingsdorf S, Krochinsky S, Friedrich B, Lenz O, Spahn CM (2011) The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479:249–252

    Article  PubMed  CAS  Google Scholar 

  • Gärtner K, Lechno-Yossef S, Cornish AJ, Wolk CP, Hegg EL (2012) Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120. Appl Environ Microbiol 78(24) 8579–8586

    Article  PubMed  Google Scholar 

  • Gerbens-Leenes W, Hoekstra AY, Van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci U S A 106:10219–10223

    Article  PubMed  CAS  Google Scholar 

  • Germer F, Zebger I, Saggu M, Lendzian F, Schulz R, Appel J (2009) Overexpression, isolation and spectroscopic characterization of the bidirectional [NiFe]-hydrogenase from Synechocystis sp. PCC 6803. J Biol Chem 284:(52):36462–36472

    Article  PubMed  CAS  Google Scholar 

  • Ghirardi M, Dubini A, Yu J, Maness P (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    Article  PubMed  CAS  Google Scholar 

  • Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nicol C, Giudici-Orticoni M (2005) A membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J Biol Chem 280:42004–42015

    Article  PubMed  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D (2012) Improvements in fermentative biological hydrogen production through metabolic engineering. J Env Manag 95(Suppl):S360–364

    Article  Google Scholar 

  • Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Henry C, Broadbelt TL, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805

    Article  PubMed  CAS  Google Scholar 

  • Hull JF, Himeda Y, Wang W-H, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4(5):383–388 (advance online publication)

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:8423–8431

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Kim S, Dale BE (2009) Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43:961–967

    Article  PubMed  CAS  Google Scholar 

  • Korn A, Ajlani G, Laguutte B, Gall A, Setif P (2009) Ferredoxin:NADP + oxidoreductase association with phycocyanin modulates its properties. J Biol Chem 284:31789–31797

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader K, Thomas-Hall S, Schenk P, Finazzi G, Hankamer B (2005a) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug J, Dismukes G, Hankamer B (2005b) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970

    Article  CAS  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial Heterocysts. Cold Spring Harbor Perspectives in Biology 2.

    Google Scholar 

  • Lee HS, Vermass WF, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Article  PubMed  CAS  Google Scholar 

  • Leino H, Kosourov SN, Saari L, Sivonen K, Tsygankov AA, Aro E-M, Allahverdiyeva Y (2012) Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. Int J Hydrog Energy 37:151–161

    Article  CAS  Google Scholar 

  • Liebgott PP, De Lacey AL, Burlat B, Cournac L, Richaud P, Brugna M, Fernandez VM, Guigliarelli B, Rousset M, Leger C, Dementin S (2011) Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site. J Am Chem Soc 133:986–997

    Article  PubMed  CAS  Google Scholar 

  • Lubner CE, Applegate AM, Knorzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci U S A 108:20988–20991

    Article  PubMed  CAS  Google Scholar 

  • Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Aemstrong FA (2011) Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. J Am Chem Soc 133:16881–16892

    Article  PubMed  CAS  Google Scholar 

  • Maness PC, Smolinski S, Dillon AC, Heben MJ, Weaver RF (2002) Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 68:2633–2636

    Article  PubMed  CAS  Google Scholar 

  • Masukawa H, Mochinaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624

    Article  PubMed  CAS  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21:244–251

    Article  Google Scholar 

  • McNeely K Xu Y, Bennette N, Bryant D, Desmukes G (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76:5032–5038

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Endo T, Ogawa T, Asada K (1995) Thylakoid Membrane-Bound, NADPH-Specific Pyridine Nucleotide Dehydrogenase Complex Mediates Cyclic Electron Transport in the Cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 36:661–668

    CAS  Google Scholar 

  • Min H, Sherman LA (2010) Genetic transformation and mutagenesis via single-stranded DNA in the unicellular, diazotrophic cyanobacteria of the genus Cyanothece. Appl Environ Microbiol 76:7641–7645

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M, Sonoike K, Hihara Y (2009) Mechanism of downregulation of photosystem I content under high-light conditions in the cyanobacterium Synechocystis sp. PCC 6803. Microbiol 155:989–996

    Article  CAS  Google Scholar 

  • Murry MA, Wolk CP (1989) Evidence that the barrier to the penetration of oxygen into heterocysts depends upon two layers of the cell envelope. Arch Microbi 151:469–474

    Article  CAS  Google Scholar 

  • Nicolet Y, Fontecilla-Camps JC (2012) Structure-function relationships in [FeFe]-hydrogenase active site maturation. J Biol Chem 287:13532–13540

    Article  PubMed  CAS  Google Scholar 

  • Ogata H, Lubitz W, Higuchi Y (2009) [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Dalton Trans 7577–7587

    Google Scholar 

  • Okegawa Y, Long TA, Iwano M, Takayama S, Kobayashi Y, Covert SF, Shikanai T (2007) A balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I. Plant Cell Physiol 48:1462–1471

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  PubMed  CAS  Google Scholar 

  • Prince R, Kheshgi H (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Stanier RY (1978) The effects of Anaerobiosis on Nitrogenase Synthesis and Heterocyst Development by Nostocacean Cyanobacteria. J Gen Microbiol 105:83–94

    Article  CAS  Google Scholar 

  • Rupprecht J, Hankamer B, Mussignug J, Ananyev G, Dismukes C, Kruse O (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol 72:442–449

    Article  PubMed  CAS  Google Scholar 

  • Saggu M, Zebger I, Ludwig M, Lenz O, Fiedrich B, Hildebrandt P, Lendzian F (2009) Spectroscopic insights into the oxygen-tolerant membrane-associated [NiFe] hydrogenase of Ralstonia eutropha H16. J Biol Chem 284:16264–16276

    Article  PubMed  CAS  Google Scholar 

  • Schlesier M, Fiedrich B (1981) In vivo inactivation of soluble hydrogenase of Alcaligenes eutrophus. Arch Microbiol 129:150–153

    Article  PubMed  CAS  Google Scholar 

  • Schneegurt MA, Sherman DM, Nayar S, Sherman LA (1994) Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 176:1586–1597

    PubMed  CAS  Google Scholar 

  • Skizim NJ, Ananyev GM, Krishnan A, Dismukes GC (2012) Metabolic pathways for photobiological hydrogen production by nitrogenase- and hydrogenase-containing unicellular cyanobacteria Cyanothece. J Biol Chem 287:2777–2786

    Article  PubMed  CAS  Google Scholar 

  • Stal LJ, Moezalaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    Article  CAS  Google Scholar 

  • Stephens E, Ross I, King Z, Mussnug J, Kruse O, Posten C, Borowitzka M, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  PubMed  CAS  Google Scholar 

  • Stripp S, Goldet G, Brandmayar C, Sanganas O, Vincent K, Haumann M, Armstrong F, Happe T (2009a) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci U S A 106:17331–17336

    Article  CAS  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009b) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci U S A 106:17331–17336

    Article  CAS  Google Scholar 

  • Takahashi H, Uchimiya H, Hirara Y (2008) Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. J Exp Bot 59:3009–3018

    Article  PubMed  CAS  Google Scholar 

  • Van Niel EW, Claassen PA, Stams AJ (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 81:255–262

    Article  PubMed  CAS  Google Scholar 

  • Veit A, Akhtar M, Mizutani T, Jones P (2008) Constructing and testing the thermodynamic limits of synthetic NAD(P)H:H2 pathways. Microbial Biotechnol 1:382–394

    Article  CAS  Google Scholar 

  • Wang PH, Blumberger J (2012) Mechanistic insight into the blocking of CO diffusion in [NiFe]-hydrogenase mutants through multiscale simulation. Proc Natl Acad Sci U S A 109:6399–6404

    Article  PubMed  CAS  Google Scholar 

  • Waschewski N, Bernat G, Rogner M (2010) Engineering Photosynthesis for H2 Production from H2O: Cyanobacteria as Design Organisms. In: Vertes A, Quereshi N, Blaschek H (eds) Biomass to Biofuels: strategies for global industries. Wiley, Ltd

    Google Scholar 

  • Weyman PD, Vargas WA, Chuang RY, Chang Y, Smith HO, Xu Q (2011) Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Escherichia coli. Microbiology 157:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Sudik A, Wolverton C, Siegel D (2010) High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev 39:656–675

    Article  PubMed  CAS  Google Scholar 

  • Yeremenko N, jeanjean R, Prommeenate P, Krasikov V, Nixon PJ, Vermass WF, Havaux M, Matthijs HC (2005) Open reading frame ssr2016 is required for antimycin A-sensitive photosystem I-driven cyclic electron flow in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 46:1433–1436

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik R. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vuorijoki, L., Kallio, P., Jones, P. (2014). Engineering Photobiological H2-Production. In: Bajpai, R., Prokop, A., Zappi, M. (eds) Algal Biorefineries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7494-0_8

Download citation

Publish with us

Policies and ethics