Skip to main content

Atmospheric Sensing Using GNSS RO

  • Chapter
  • First Online:
GNSS Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 19))

Abstract

In this chapter, the basic methodology to derive the geophysical parameters from GNSS RO refractivity will be explored in Sect. 6.1. In the following Sect. 6.2, the detailed characteristics of RO observables will be studied. The science application utilizing such RO derived geophysical parameters, spanning from atmospheric dynamic process to weather and climate studies, will be presented from Sects. 6.3, 6.4 and 6.5. Some future missions of GNSS RO and other novel application of the RO techniques will be discussed in Sect. 6.6, such as the airborne/mountain-top GNSS RO and LEO-to-LEO occultation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad B, Tyler GL (1999) Systematic errors in atmospheric profiles obtained from Abelian inversion of radio occultation data: effects of large-scale horizontal gradients. J Geophys Res 104(D4):3971–3992. doi:10.1029/1998JD200102

    Google Scholar 

  • Anthes RA (2011) Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos Meas Tech 4:1077–1103. doi:10.5194/amt-4-1077-201l

    Google Scholar 

  • Anthes RA, Rocken C, Kuo Y-H (2000) Applications of COSMIC to meteorology and climate. Terr Atmos Ocean Sci 11:115–156

    Google Scholar 

  • Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo Y-H, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 Mission-Early results. Bull Am Meteorol Soc 89:313–333

    Google Scholar 

  • Ao CO (2007) Effect of ducting on radio occultation measurements: an assessment based on high-resolution radiosonde soundings. Radio Sci 42:RS2008. doi:10.1029/2006RS003485

    Google Scholar 

  • Ao CO, Meehan TK, Hajj GA, Mannucci AJ, Beyerle G (2003) Lower troposphere refractivity bias in GPS occultation retrievals. J Geophys Res 108(D18):4577. doi:10.1029/2002JD003216

    Google Scholar 

  • Ao CO, Hajj GA, Meehan TK, Dong D, Iijima BA, Mannucci AJ, Kursinski ER (2009) Rising and setting GPS occultations by use of open-loop tracking. J Geophys Res 114:D04101. doi:10.1029/2008JD010483

    Google Scholar 

  • Ao CO, Waliser DE, Chan SK, Li J-L, Tian B, Xie F, Mannucci AJ (2012) Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J Geophys Res 117:D16117. doi:10.1029/2012JD017598

    Google Scholar 

  • Aoyama Y, Shoji Y, Mousa A, Tsuda T, Nakamura H (2004) Temperature and water vapor profiles derived from downward-looking GPS occultation data. J Meteorol Soc Jpn 82:433–440

    Google Scholar 

  • Aparicio J, Deblonde G (2008) Impact of the assimilation of CHAMP refractivity profiles on Environment Canada global forecasts. Mon Weather Rev 136(1):257–275

    Google Scholar 

  • Aparicio JM, Laroche S (2011) An evaluation of the expression of the atmospheric refractivity for GPS signals. J Geophys Res Atmos 116:D11104

    Google Scholar 

  • Aparicio J, Deblonde G, Garand L, Laroche S (2009) The signature of the atmospheric compressibility factor in COSMIC, CHAMP and GRACE radio occultation data. J Geophys Res 114:D16114. doi:10.1029/2008JD011156

    Google Scholar 

  • Bassiri S, Hajj GA (1993) Higher-order ionospheric effect on the Global Positioning System observables and means of modeling them. Manuscr Geodaet 18:280–289

    Google Scholar 

  • Bertiger WI, Wu S (1996) Single frequency GPS orbit determination for low Earth orbiters. Paper presented at the National Technical Meeting, Institute of Navigations, Santa Monica, CA, January

    Google Scholar 

  • Bertiger WI et al (1994) GPS precise tracking of TOPEX/POSEISON: results and implications. J Geophys Res 99:24,449–24,464

    Google Scholar 

  • Beyerle G, Gorbunov ME, Ao CO (2003) Simulation studies of GPS radio occultation measurements. Radio Sci 38(5):1084. doi:10.1029/2002RS002800

    Google Scholar 

  • Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32:L13806. doi:10.1029/2005GL023109

    Google Scholar 

  • Borsche M, Kirchengast G, Foelsche U (2007) Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses. Geophys Res Lett 34:L03702. doi:10.1029/2006GL027918

    Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric tides: thermal and gravitational. Gordon and Breach, New York, NY, 200 pp

    Google Scholar 

  • Chen S-Y, Huang C-Y, Kuo Y-H, Guo Y-R, Sokolovskiy S (2009) Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. Terr Atmos Ocean Sci 20:133–154

    Google Scholar 

  • Cucurull L (2010) Improvement in the use of an operational constellation of GPS radio-occultation receivers in weather forecasting. Weather Forecast 25(2):749–767. doi:10.1175/2009WAF2222302.1

    Google Scholar 

  • Cucurull L, Derber JC (2008) Operational implementation of COSMIC observations into NCEP’s Global Data Assimilation System. Weather Forecast 23:702–711

    Google Scholar 

  • Cucurull L, Kuo YH, Barker D, Rizvi SRH (2006) Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: a case study. Mon Weather Rev 134:3283–3296

    Google Scholar 

  • Foelsche U, Kirchengast G, Steiner AK, Kornblueh L, Manzini E, Bengtsson L (2008) An observing system simulation experiment for climate monitoring with GNSS radio occultation data: setup and test bed study. J Geophys Res 113:D11108. doi:10.1029/2007JD009231

    Google Scholar 

  • Foelsche U, Scherllin-Pirscher B, Ladstädter F, Steiner AK, Kirchengast G (2011) Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05%. Atmos Meas Tech 4:2007–2018

    Google Scholar 

  • Gobiet A, Kirchengast G, Manney GL, Borsche M, Retscher C, Stiller G (2007) Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses. Atmos Chem Phys 7:3519–3536. doi:10.5194/acp-7-3519-2007

    Google Scholar 

  • Gorbunov ME (2002) Radio-holographic analysis of Microlab-1 radio occultation data in the lower troposphere. J Geophys Res 107(D12):4156. doi:10.1029/2001JD000889

    Google Scholar 

  • Gorbunov ME, Benzon H-H, Jensen AS, Lohmann MS, Nielsen AS (2004) Comparative analysis of radio occultation processing approaches based on Fourier integral operators. Radio Sci 39:RS6004. doi:10.1029/2003RS002916

    Google Scholar 

  • Guo P, Kuo Y-H, Sokolovskiy S, Lenschow DH (2011) Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J Atmos Sci 68:1703–1713. doi:10.1175/2011JAS3612.1

    Google Scholar 

  • Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Solar Terr Phys 64:451–469

    Google Scholar 

  • Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109:D06109. doi:10.1029/2003JD003909

    Google Scholar 

  • He W, Ho S, Chen H, Zhou X, Hunt D, Kuo Y (2009) Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys Res Lett 36:L17807. doi:10.1029/2009GL038712

    Google Scholar 

  • Healy SB (2001) Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: a simulation study. J Geophys Res 106:11,875–11,889

    Google Scholar 

  • Healy SB (2007) Operational assimilation of GPS radio occultation measurements at ECMWF. European Centre for Medium-range Weather Forecasts (ECMWF) Newsletter No. 111, Reading, UK

    Google Scholar 

  • Healy SB (2008) Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos Sci Lett 9:111–118

    Google Scholar 

  • Healy SB (2011) Refractivity coefficients used in the assimilation of GPS radio occultation measurements. J Geophys Res 116:D01106. doi:10.1029/2010JD014013

    Google Scholar 

  • Healy SB, Eyre JR (2000) Retrieving temperature, water vapour and surface pressure information from refractive index profiles derived by radio occultation: a simulation study. Q J R Meteorol Soc 126:1661–1683

    Google Scholar 

  • Healy SB, Thepaut JN (2006) Assimilation experiments with CHAMP GPS radio occultation measurements. Q J R Meteorol Soc 132:605–623

    Google Scholar 

  • Healy SB, Haase J, Lesne O (2002) Abel transform inversion of radio occultation measurements made with a receiver inside the Earth’s atmosphere. Ann Geophys 20(8):1253–1256

    Google Scholar 

  • Ho S-P, Kuo Y-H, Zeng Z, Peterson T (2007) A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data. Geophys Res Lett 34:L15701. doi:10.1029/2007GL030202

    Google Scholar 

  • Ho S-P, Goldberg M, Kuo Y-H, Zou C-Z, Schreiner W (2009a) Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: preliminary results. Terr Atmos Ocean Sci 20:87–100

    Google Scholar 

  • Ho S-P, Kirchengast G, Leroy S, Wickert J, Mannucci AJ, Steiner A, Hunt D, Schreiner W, Sokolovskiy S, Ao C, Borsche M, von Engeln A, Foelsche U, Heise S, Iijima B, Kuo Y-H, Kursinski ER, Pirscher B, Ringer M, Rocken C, Schmidt T (2009b) Estimating the uncertainty of using GPS radio occultation data for climate monitoring: intercomparison of CHAMP refractivity climate records 2002–2006 from different data centers. J Geophys Res 114:D23107. doi:10.1029/2009JD011969

    Google Scholar 

  • Ho S-P, Kuo Y-H, Schreiner W, Zhou X (2010a) Using SI-traceable Global Positioning System radio occultation measurements for climate monitoring, in: State of the Climate in 2009. Bull Am Meteorol Sci 91:S36–S37

    Google Scholar 

  • Ho S-P, Zhou X, Kuo Y-H, Hunt D (2010b) Climate calibration observatory in orbit: calibration and validation of measurements of AMSU and AIRS using Global Positioning System Radio Occultation Observations. Joint OPAC-4 and GRAS SAF climate workshop, Graz, Austria, September 610 pp

    Google Scholar 

  • Huang C-Y, Kuo Y-H, Chen S-H, Vandenberghe F (2005) Improvements in typhoon forecasts with assimilated GPS occultation refractivity. Weather Forecast 20:931–953

    Google Scholar 

  • Jensen AS, Lohmann M, Benzon H-H, Nielsen AS (2003) Full spectrum inversion of radio occultation signals. Radio Sci 38(3):1040. doi:10.1029/2002RS002763

    Google Scholar 

  • Kirchengast G, Hoeg P (2004) The ACE + Mission: an Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO‐LEO radio occultation. In: Kirchengast G et al (eds) Occultations for probing atmosphere and climate. Springer, Berlin, pp 201–220

    Google Scholar 

  • Kirchengast G, Schweitzer S (2011) Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space. Geophys Res Lett 38:L13701. doi:10.1029/2011GL047617

    Google Scholar 

  • Kuo Y-H, Zou X, Chen SJ, Huang W, Guo Y-R, Anthes RA, Exner M, Hunt D, Rocken C, Sokolovskiy S (1998) A GPS/MET sounding through an upper-level front. Bull Am Meteorol Soc 79:617–626

    Google Scholar 

  • Kuo Y-H, Sokolovskiy S, Anthes RA, Vandenberghe F (2000) Assimilation of GPS radio occultation data for numerical weather prediction. Terr Atmos Ocean Sci 11:157–158

    Google Scholar 

  • Kuo YH, Wee TK, Sokolovskiy S, Rocken C, Schreiner W, Hunt D, Anthes RA (2004) Inversion and error estimation of GPS radio occultation data. J Meteorol Soc Jpn 82(1B):507–531

    Google Scholar 

  • Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS radio occultation soundings with radiosondes. Geophys Res Lett 32:L05817. doi:10.1029/2004GL021443

    Google Scholar 

  • Kursinski ER (1994) Monitoring the Earth’s atmosphere with GPS. GPS World 5:50–54

    Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102(D19):23429–23465

    Google Scholar 

  • Kursinski ER, Hajj GA, Leroy SS, Herman B (2000a) The GPS radio occultation technique. Terr Atmos Ocean Sci 11:53–114

    Google Scholar 

  • Kursinski ER, Healy SB, Romans LJ (2000b) Initial results of combining GPS occultations with ECMWF global analyses within a 1DVar framework. Earth Planets Space 52:885–892

    Google Scholar 

  • Kursinski ER, Syndergaard S, Flittner D, Feng D, Hajj G, Herman B, Ward D, Yunck T (2002) A microwave occultation observing system optimized to characterize atmospheric water, temperature and geopotential via absorption. J Atmos Ocean Technol 19:1897–1914

    Google Scholar 

  • Kursinski ER, Ward D, Otarola A, Frehlich R, Groppi C, Albana S, Shein M, Bertiger W, Pickett H, Ross M (2009) The Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). In: Steiner A et al (eds) New horizons in occultation research: studies in atmosphere and climate. Springer, Berlin, pp 295–313. doi:10.1007/978-3-642-00321-9_24

    Google Scholar 

  • Lackner BC, Steiner AK, Hegerl GC, Kirchengast G (2011) Atmospheric climate change detection by radio occultation data using a fingerprinting method. J Clim 24:5275–5291

    Google Scholar 

  • Ladstädter F, Steiner AK, Foelsche U, Haimberger L, Tavolato C, Kirchengast G (2011) An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation. Atmos Meas Tech 4:1965–1977. doi:10.5194/amt-4-1965-2011

    Google Scholar 

  • LeMarshall J, Xiao Y, Norman R, Zhang K, Rea A, Cucurull L, Seecamp R, Steinie P, Puri K, Le T (2010) The beneficial impact of radio occultation observations on Australian regional forecasts. Aust Meteorol Ocean J 62:121–125

    Google Scholar 

  • Leroy S (1997) Measurement of geopotential heights by GPS radio occultation. J Geophys Res 102:6971–6986

    Google Scholar 

  • Leroy SS, Anderson JG, Dykema JA (2006) Testing climate models using GPS radio occultation: a sensitivity analysis. J Geophys Res 111:D17105. doi:10.1029/2005JD006145

    Google Scholar 

  • Lesne O, Haase J, Kirchengast G, Ramsauer J, Poetzi W (2002) Sensitivity analysis for airborne sounding of the troposphere by GNSS radio occultation. Phys Chem Earth 27(4–5):291–299

    Google Scholar 

  • Liu H, Anderson J, Kuo Y-H (2012) Improved analyses and forecasts of Hurricane Ernesto’s genesis using radio occultation data in an Ensemble Filter Assimilation System. Mon Weather Rev 140:151–166

    Google Scholar 

  • Lopez P (2009) A 5‐yr 40‐km‐resolution global climatology of superrefraction for ground‐based weather radars. J Appl Meteorol Climatol 48(1):89–110. doi:10.1175/2008JAMC1961.1

    Google Scholar 

  • Luntama J-P, Kirchengast G, Borsche M, Foelsche U, Steiner A, Healy S, von Engeln A, O’Clerigh E, Marquardt C (2008) Prospects of the EPS GRAS mission for operational atmospheric applications. Bull Am Meteorol Soc 89:1863–1875

    Google Scholar 

  • McLandress C (1997) Seasonal variability of the diurnal tide: results from the Canadian Middle atmospheric general circulation model. J Geophys Res 102:29,747–29,764

    Google Scholar 

  • Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy KR, Kursinski ER, Meehan TK, Young LE, Yunck TP (1994) The application of GPS to atmospheric limb sounding and global change monitoring. JPL Publ 94-18, Pasadena, CA, 147 pp

    Google Scholar 

  • Mousa A, Tsuda T (2004) Inversion algorithms for GPS downward looking occultation data: simulation analysis. J Meteorol Soc Jpn 82:427–432

    Google Scholar 

  • Muradyan P, Haase JS, Xie F, Garrison JL, Voo J (2010) GPS/INS navigation precision and its effect on airborne radio occultation retrieval accuracy. GPS Solut. doi:10.1007/s10291-010-0183-7

    Google Scholar 

  • Neiman PJ, Ralph FM, Wick GA, Kuo Y-H, Wee T-K, Ma Z, Taylor GH, Dettinger MD (2008) Diagnosis of an intense atmospheric river impacting the Pacific Northwest: storm summary and offshore vertical structure observed with COSMIC satellite retrieval. Mon Weather Rev 136:4398–4420

    Google Scholar 

  • Ohring G, Wielicki B, Spencer R, Emery B, Atlas R (2005) Satellite instrument calibration for measuring global climate change – report of a workshop. Bull Am Meteorol Soc 86:1303–1313

    Google Scholar 

  • Owens JS (1967) Optical refractive index of air: dependence on pressure, temperature and composition. Appl Opt 6:51–58

    Google Scholar 

  • Palmer PI, Barnett JJ, Eyre JR, Healy SB (2000) A non-linear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure. J Geophys Res 105:17513–17526

    Google Scholar 

  • Pirscher B, Foelsche U, Borsche M, Kirchengast G, Kuo Y-H (2010) Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data. J Geophys Res 115:D14108. doi:10.1029/2009JD013008

    Google Scholar 

  • Poli P (2004) Effects of horizontal gradients on GPS radio occultation observation operators. II: A Fast Atmospheric Refractivity Gradient Operator (FARGO). Q J R Meteorol Soc 130. doi:10.1256/qj.03.229

  • Poli P, Joiner J (2004) Effects of horizontal gradients on GPS radio occultation observation operators. I: Ray tracing. Q J R Meteorol Soc 130:2787–2805

    Google Scholar 

  • Poli P, Joiner J, Kursinski ER (2002) 1DVAR analysis of temperature and humidity using GPS radio occultation refractivity data. J Geophys Res 107(D20):4448. doi:10.1029/2001JD000935

    Google Scholar 

  • Poli P, Moll P, Puech D, Rabier F, Healy SB (2007) Quality control, error analysis, and impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction. Terr Atmos Ocean Sci 20:101–113

    Google Scholar 

  • Poli P, Healy SB, Dee DP (2010) Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis. Q J R Meteorol Soc 136:1972–1990. doi:10.1002/qj.722

    Google Scholar 

  • Randel WJ, Wu F (2005) Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J Geophys Res 110:D03102. doi:10.1029/2004JD005006

    Google Scholar 

  • Randel WJ, Wu F, Rivera Ríos W (2003) Thermal variability of the tropical tropopause region derived from GPS/MET observations. J Geophys Res 108(D1):4024. doi:10.1029/2002JD002595

    Google Scholar 

  • Ratnam MV, Basha SG (2010) A robust method to determine global distribution of atmospheric boundary layer top from COSMIC GPS RO measurements. Atmos Sci Lett 11:216–222. doi:10.1002/asl.277

    Google Scholar 

  • Rennie M (2008) The assimilation of GPS radio occultation data into the Met Office global model, Met R&D technical report 510, Met Office, UK

    Google Scholar 

  • Ringer MA, Healy SB (2008) Monitoring twenty-first century climate using GPS radio-occultation bending angles. Geophys Res Lett 35:L05708. doi:10.1029/2007GL032462

    Google Scholar 

  • Rocken C, Anthes R, Exner M, Ware R, Feng D, Gorbunov M, Herman B, Hunt D, Kuo Y-H, Schreiner W, Sokolovskiy S, Zou X (1997) Verification of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29,849–29,866

    Google Scholar 

  • Rüeger J (2002) Refractive index formulae for electronic distance measurements with radio and millimetre waves, Unisurv Report 109. University of New South Wales, Sydney, pp 758–766

    Google Scholar 

  • Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem Phys 5:1473–1488. doi:10.5194/acp-5-1473-2005

    Google Scholar 

  • Schmidt T, Beyerle G, Heise S, Wickert J, Rothacher M (2006) A climatology of multiple tropopauses derived from GPS radio occultations with CHAMP and SAC-C. Geophys Res Lett 33:L04808. doi:10.1029/2005GL024600

    Google Scholar 

  • Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35:L11806. doi:10.1029/2008GL034012

    Google Scholar 

  • Schmidt T, Wickert J, Haser A (2010) Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv Space Res 46:150–161. doi:10.1016/j.asr.2010.01.021

    Google Scholar 

  • Schreiner W, Rocken C, Sokolovskiy S, Syndergaard S, Hunt D (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34:L04808. doi:10.1029/2006GL027557

    Google Scholar 

  • Schweitzer S, Kirchengast G, Proschek V (2011) Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites. Atmos Meas Tech 4:2273–2292. doi:10.5194/amt-4-2273-2011

    Google Scholar 

  • Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. Proc IRE 41:1035–1037

    Google Scholar 

  • Sokolovskiy SV (2001) Tracking tropospheric radio occultation signals from low Earth orbit. Radio Sci 36(3):483–498

    Google Scholar 

  • Sokolovskiy S (2003) Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci 38(3):1058. doi:10.1029/2002RS002728

    Google Scholar 

  • Sokolovskiy SV, Kuo Y-H, Wang W (2005) Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: case simulations with a high-resolution weather model. Mon Weather Rev 133:2200–2212

    Google Scholar 

  • Sokolovskiy S, Rocken C, Hunt D, Schreiner W, Johnson J, Masters D, Esterhuizen S (2006a) GPS profiling of the lower troposphere from space: inversion and demodulation of the open-loop radio occultation signals. Geophys Res Lett 33:L14816. doi:10.1029/2006GL026112

    Google Scholar 

  • Sokolovskiy S, Kuo Y-H, Rocken C, Schreiner WS, Hunt D, Anthes RA (2006b) Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys Res Lett 33:L12813. doi:10.1029/2006GL026112

    Google Scholar 

  • Sokolovskiy SV, Rocken C, Lenschow DH, Kuo Y-H, Anthes RA, Schreiner WS, Hunt DC (2007) Observing the moist troposphere with radio occultation signals from COSMIC. Geophys Res Lett 34:L18802. doi:10.1029/2007GL030458

    Google Scholar 

  • Sokolovskiy S, Rocken C, Schreiner W, Hunt D, Johnson J (2009) Postprocessing of L1 GPS radio occultation signals recorded in open-loop mode. Radio Sci 44:RS2002. doi:10.1029/2008RS003907

    Google Scholar 

  • Sokolovskiy S, Lenschow D, Rocken C, Schreiner W, Hunt D, Kuo Y-H, Anthes R (2010) Variability of the boundary layer depth over certain regions of subtropical ocean from 3 years of COSMIC data. Presentation at the 90th AMS annual meeting, Atlanta, GA, USA, 17–21 January

    Google Scholar 

  • Steffes PG, Jenkins JM, Austin RS, Asmar SW, Lyons DT, Seale EH, Tyler GL (1994) Radio occultation studies of the Venus atmosphere with the Magellan spacecraft, 1. Experiment description and performance. Icarus 110:71–78

    Google Scholar 

  • Steiner AK, Kirchengast G (2000) Gravity wave spectra from GPS/MET occultation observations. J Atmos Ocean Technol 17:495–503

    Google Scholar 

  • Steiner AK, Kirchengast G, Borsche M, Foelsche U, Schoengassner T (2007) A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records. J Geophys Res 112:D22110. doi:10.1029/2006JD008283

    Google Scholar 

  • Steiner AK, Kirchengast G, Lackner BC, Pirscher B, Borsche M, Foelsche U (2009) Atmospheric temperature change detection with GPS radio occultation 1995 to 2008. Geophys Res Lett 36:L18702. doi:10.1029/2009GL039777

    Google Scholar 

  • Steiner AK, Hunt D, Ho S-P, Kirchengast G, Mannucci AJ, Scherllin-Pirscher B, Gleisner H, von Engeln A, Schmidt T, Ao C, Leroy SS, Kursinski ER, Foelsche U, Gorbunov M, Heise S, Kuo Y-H, Lauritsen KB, Marquardt C, Rocken C, Schreiner W, Sokolovskiy S, Syndergaard S, Wickert J (2013) Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos Chem Phys 13:1469–1484. doi:10.5194/acp-13-1469-2013

    Google Scholar 

  • Stephens SA, Thomas JB (1995) Controlled-root formulations for digital phase-locked loops. IEEE Trans Aerosp Electron Syst 31(1):78–95

    Google Scholar 

  • Syndergaard S (1998) Modeling the impact of the Earth’s oblateness on the retrieval of temperature and pressure profiles from limb sounding. J Atmos Solar-Terr Phys 60(2):171–180

    Google Scholar 

  • Syndergaard S, Kursinski ER, Herman BM, Lane EM, Flittner DE (2005) A refractive index mapping operator for assimilation of occultation data. Mon Weather Rev 133:2650–2668

    Google Scholar 

  • Thayer GD (1974) An improved equation for the radio refractive index of air. Radio Sci 9:803–807

    Google Scholar 

  • Treuheft RN, Lanyi GE (1987) The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci 22:251–265

    Google Scholar 

  • Tsuda T, Nishida M, Rocken C, Ware RH (2000) A global morphology of gravity wave activity in the stratosphere revealed by the GPS Occultation Data (GPS/MET). J Geophys Res 105:7257–7273

    Google Scholar 

  • Tyler GL (1987) Radio occultation experiments in the outer solar system with Voyager. Proc IEEE 75:1404–1431

    Google Scholar 

  • von Engeln A, Teixeira J (2004) A ducting climatology derived from the European Centre for Medium-Range Weather Forecasts global analysis fields. J Geophys Res 109, D18104. doi:10.1029/2003JD004380

    Google Scholar 

  • Vorobev VV, Krasilnikova TG (1994) Estimation of accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Izv Russ Acad Sci Atmos Ocean Phys Engl Transl 29:602–609

    Google Scholar 

  • Wee T-K, Kuo Y-H, Lee D-K (2010) Development of a curved ray tracing method for modeling of phase paths from GPS radio occultation: a two-dimensional study. J Geophys Res 115:D24119. doi:10.1029/2010JD014419

    Google Scholar 

  • Xie F (2006) Development of a GPS occultation retrieval method for characterizing the marine boundary layer in the presence of super-refraction. Dissertation, University of Arizona, 134 pp

    Google Scholar 

  • Xie F, Syndergaard S, Kursinski ER, Herman BM (2006) An approach for retrieving marine boundary layer refractivity from GPS occultation data in the presence of superrefraction. J Atmos Ocean Technol 23:1629–1644. doi:10.1175/JTECH1996.1

    Google Scholar 

  • Xie F, Haase JS, Syndergaard S (2008) Profiling the atmosphere using the airborne GPS radio occultation technique: a sensitivity study. IEEE Trans Geosci Remote Sens. doi:10.1109/TGRS.2008.2004713

    Google Scholar 

  • Xie F, Wu DL, Ao CO, Kursinski ER, Mannucci AJ, Syndergaard S (2010a) Super‐refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophys Res Lett 37:L11805. doi:10.1029/2010GL043299

    Google Scholar 

  • Xie F, Wu DL, Ao CO, Mannucci AJ (2010b) Atmospheric diurnal variations observed with GPS radio occultation soundings. Atmos Chem Phys 10:6889–6899. doi:10.5194/acp-10-6889-2010

    Google Scholar 

  • Xie F, Wu DL, Ao CO, Mannucci AJ, Kursinski ER (2012a) Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos Chem Phys 12:903–918. doi:10.5194/acp-12-903-2012

    Google Scholar 

  • Xie F, Haase JS, Muradyan P (2012b) Airborne GNSS radio occultation retrieval with a radio-holographic method. IROWG 2nd Workshop, Estes Park, CO, March 28–April 3

    Google Scholar 

  • Yunck TP, Lindal GF, Liu C-H (1988) The role of GPS in precise Earth observation. In: Proceedings of the IEEE position location and navigation symposium (PLANS 88), Nov 29–Dec 2

    Google Scholar 

  • Zeng Z, Randel W, Sokolovskiy S, Deser C, Kuo Y-H, Hagan M, Du J, Ward W (2008) Detection of migrating diurnal tide in the tropical middle atmosphere using the Challenging Minisatellite Payload radio occultation data. J Geophys Res 113:D03102. doi:10.1029/2007JD008725

    Google Scholar 

  • Zou X, Kuo YH, Guo YR (1995) Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon Weather Rev 123:2229–2249

    Google Scholar 

  • Zou X, Wang B, Liu H, Anthes RA, Matsumura T, Zhu Y-J (2000) Use of GPS/MET refraction angles in 3D variational analysis. Q J R Meteorol Soc 126:3013–3040

    Google Scholar 

  • Zou X, Liu H, Anthes RA (2002) A statistical estimate of errors in the calculation of radio occultation bending angles caused by a 2D approximation of raytracing and the assumption of spherical symmetry of the atmosphere. J Atmos Ocean Technol 19:51–64

    Google Scholar 

  • Zuffada C, Hajj GA, Kursinski ER (1999) A novel approach to atmospheric profiling with a mountain-based or airborne receiver. J Geophys Res 104(D20):24435–24447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jin, S., Cardellach, E., Xie, F. (2014). Atmospheric Sensing Using GNSS RO. In: GNSS Remote Sensing. Remote Sensing and Digital Image Processing, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7482-7_6

Download citation

Publish with us

Policies and ethics