Theory of GNSS Radio Occultation

  • Shuanggen Jin
  • Estel Cardellach
  • Feiqin Xie
Part of the Remote Sensing and Digital Image Processing book series (RDIP, volume 19)


In this chapter, a brief history of the radio occultation remote sensing technique is introduced. The physical principles of GNSS radio occultation (RO) technique are discussed, and the detailed GNSS RO processing steps are presented finally


Global Position System Global Navigation Satellite System Global Navigation Satellite System Ionospheric Delay Radio Occultation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo Y-H, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission-early results. Bull Am Meteorol Soc 89:313–333CrossRefGoogle Scholar
  2. Bassiri S, Hajj GA (1993) Higher-order ionospheric effect on the Global Positioning System observables and means of modeling them. Manuscr Geod 18:280–289Google Scholar
  3. Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32:L13806. doi: 10.1029/2005GL023109 CrossRefGoogle Scholar
  4. Born M, Wolf E (1980) Principles of optics. Electromagnetic theory of propagation interference and diffraction of light. Pergamon Press, Oxford/New YorkGoogle Scholar
  5. Eliseev SD, Yakovlev OI (1989) On the radio occultation measurements in the Earth’s atmosphere using millimeter radio waves (in Russian). Izv Vyssh Uchebn Zaved Radiofiz 32:3–10Google Scholar
  6. Feng D, Herman B, Exner M, Schreiner B, Anthes R, Ware R (1995) Space-borne GPS remote sensing for atmospheric research. Proc Synth Apert Radar Passiv Microw Sens 2584:448–455CrossRefGoogle Scholar
  7. Fishbach FF (1965) A satellite method for temperature and pressure below 24 km. Bull Am Meteorol Soc 9:528–532Google Scholar
  8. Fjeldbo G, Eshleman VR (1965) The bistatic radar-occultation method for the study of planetary atmosphere. J Geophys Res 70(1965):3217–3226CrossRefGoogle Scholar
  9. Fjeldbo G, Eshleman VR (1968) The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet Space Sci 16:1035–1059CrossRefGoogle Scholar
  10. Fjeldbo GF, Eshleman VR, Kliore AJ (1971) The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron J 76:123–140Google Scholar
  11. Fjeldbo (Lindal) G, Kliore AJ, Seidel B, Sweetnam D, Cain D (1975) The Pioneer 10 radio occultation measurement of the ionosphere of Jupiter. Astron Astrophys 39:91Google Scholar
  12. Galas R, Wickert J, Burghardt W (2001) High rate low latency GPS ground tracking network for CHAMP. Phys Chem Earth (A) 26:649–652CrossRefGoogle Scholar
  13. Gorbunov ME (2002) Canonical transform method for processing radio occultation data in lower troposphere. Radio Sci 37(5):1076. doi: 10.1029/2000RS002592 Google Scholar
  14. Gorbunov ME, Gurvich AS (1998) Microlab-1 experiment: multipath effects in the lower troposphere. J Geophys Res 103(D12):13,819–13,826Google Scholar
  15. Gurvich AS, Krasil'nikova TG (1987) On the use of navigational satellites in radio occultation measurements in the Earth’s atmosphere (in Russian). Issled Zemli Kosmosa 6:89–93Google Scholar
  16. Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the Global Positioning System: results from the GPS/MET experiment. Radio Sci 33(1):175–190CrossRefGoogle Scholar
  17. Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Solar Terr Phys 64:451–469CrossRefGoogle Scholar
  18. Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109:D06109. doi: 10.1029/2003JD003909 CrossRefGoogle Scholar
  19. Hedin AE (1991) Extension of the MSIS thermosphere model into the middle and lower atmosphere. J Geophys Res 96:1159–1172. doi: 10.1029/90JA02125 CrossRefGoogle Scholar
  20. Hinson DP, Flasar FM, Schinder AJKPJ, Twicken JD, Herrera RG (1997) Jupiter’s ionosphere: results from the first Galileo radio occultation experiment. Geophys Res Lett 24(17):2107–2110CrossRefGoogle Scholar
  21. Ho S-P, Kirchengast G, Leroy S, Wickert J, Mannucci AJ, Steiner A, Hunt D, Schreiner W, Sokolovskiy S, Ao C, Borsche M, von Engeln A, Foelsche U, Heise S, Iijima B, Kuo Y-H, Kursinski ER, Pirscher B, Ringer M, Rocken C, Schmidt T (2009) Estimating the uncertainty of using GPS radio occultation data for climate monitoring: intercomparison of CHAMP refractivity climate records 2002–2006 from different data centers. J Geophys Res 114:D23107. doi: 10.1029/2009JD011969 CrossRefGoogle Scholar
  22. Hocke KA, Pavelyev AG, Yakovlev OI, Barthes L, Jakowski N (1999) Radio occultation data analysis by the radioholographic method. J Atmos Sol Terr Phys 61(15):1169–2117CrossRefGoogle Scholar
  23. Howard HT, Tyler GL, Esposito PB, Anderson JD, Reasenberg RD, Shapiro II, Fjeldbo G, Kliore AJ, Levy GS, Brunn DI, Dickinson R, Edelson RE, Martin WL, Postal RB, Seidel B, Sesplaukis TT, Shirley DL, Stelzried CT, Sweetnam DN, Wood GE, Zygielbaum AI (1974) Mercury: results on Mass, radius, ionosphere and atmosphere obtained from the Mariner 10 dual frequency radio signals. Science 185(4146):179–183CrossRefGoogle Scholar
  24. Ivanov GS, Kolosov MA, Savich NA et al (1979) Daytime ionosphere of Venus as studied with Venera 9 and 10 dual-frequency experiments. Icarus 39(2):209CrossRefGoogle Scholar
  25. Jensen AS, Lohmann M, Benzon H-H, Nielsen AS (2003) Full spectrum inversion of radio occultation signals. Radio Sci 38(3):1040. doi: 10.1029/2002RS002763 CrossRefGoogle Scholar
  26. Jensen AS, Lohmann MS, Nielsen AS, Benzon H-H (2004) Geometrical optics phase matching of radio occultation signals. Radio Sci 39:RS3009. doi: 10.1029/2003RS002899 CrossRefGoogle Scholar
  27. Kalashnikov IE, Yakovlev OI (1978) Possibility of investigation of the Earth’s atmosphere using the radio occultation method (in Russian). Kosm Issled 16:943–946 (English translation, Cosm Res 16:943–946, 1978)Google Scholar
  28. Kliore AJ (1969) Some remarks on meteorological measurements with occultation satellites. In: Space research, vol IX. North-Holland, Publishing Company, Amsterdam, pp 590–602Google Scholar
  29. Kliore A, Cain DL, Levy GS, Eshleman VR, Fjeldbo G, Drake FD (1965) Occultation experiment: results of the first direct measurement of Mar’s atmosphere and ionosphere. Science 149:1243–1248CrossRefGoogle Scholar
  30. Kliore A, Levy GS, Cain DL, Fjeldbo G, Rasool SI (1967) Atmosphere and ionosphere of Venus from the Mariner V S-band radio occultation measurement. Science 158(3809):1683–1688CrossRefGoogle Scholar
  31. Kliore AJ, Fjeldbo G, Siedel BL, Sweetnam DN, Sesplaukis TT, Woiceshyn PM, Rasool SI (1975) The atmosphere of Io from Pioneer 10 radio occultation measurements. Icarus 24:407–410CrossRefGoogle Scholar
  32. Kliore AJ, Patel IR, Lindal GF, Sweetnam DN, Hotz HB, Waite JH Jr, McDonough TR (1980) Structure of the ionosphere and atmosphere of Saturn From Pioneer 11 Saturn radio occultation. J Geophys Res 85(A11):5857–5870. doi: 10.1029/JA085iA11p05857 CrossRefGoogle Scholar
  33. Kliore AJ, Hinson DP, Flasar FM, Nagy AF, Cravens TE (1997) The ionosphere of Europa from Galileo radio occultations. Science 277:355–358CrossRefGoogle Scholar
  34. Kolosov MA, Yakovlev OI, Trusov BP et al (1976) Radio occultation investigation of the atmosphere of Venus by use of satellites Venera-9 and Venera-10. Radio Eng Electron Phys 21(8):1585Google Scholar
  35. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102(D19):23429–23465CrossRefGoogle Scholar
  36. Kursinski ER, Hajj GA, Leroy SS, Herman B (2000) The GPS radio occultation technique. Terr Atmos Ocean Sci 11:53–114Google Scholar
  37. Lindal GF, Wood GE, Hotz HB, Sweetnam DN, Eshleman VR, Tyler GL (1983) The atmosphere of Titan: an analysis of the Voyager 1 radio-occultation measurements. Icarus 53:348–363CrossRefGoogle Scholar
  38. Lindal GF, Lyons JR, Sweetnam DN, Eshleman VR, Hinson DP, Tyler GL (1987) The atmosphere of Uranus: results of radio occultation measurements with voyager 2. J Geophys Res 92:14987–15001CrossRefGoogle Scholar
  39. Liu AS (1978) On the determination and investigation of the terrestrial ionospheric refractive indices using GEOS-3/ATS-6 satellite-to-satellite tracking data. NASA-CR-156848, Nov 1978, Jet Propulsion Laboratory, PasadenaGoogle Scholar
  40. Lohmann M (2005) Application of dynamical error estimation for statistical optimization of radio occultation bending angles. Radio Sci 40:RS3011. doi: 10.1029/2004RS003117 CrossRefGoogle Scholar
  41. Luntama J-P, Kirchengast G, Borsche M, Foelsche U, Steiner A, Healy S, von Engeln A, O’Clerigh E, Marquardt C (2008) Prospects of the EPS GRAS mission for operational atmospheric applications. Bull Am Meteorol Soc 89:1863–1875CrossRefGoogle Scholar
  42. Lusignan B, Modrell G, Morrison A, Pomalaza J, Ungar SG (1969) Sensing the Earth’s atmosphere with occultation satellites. Proc IEEE 57(4):458–467CrossRefGoogle Scholar
  43. Marouf EA, Tyler GL (1986) Detection of two satellites in the Cassini division of Saturn’s rings. Nature 6083:31–35CrossRefGoogle Scholar
  44. Marouf EA, Tyler GL, Rosen PA (1986) Profiling Saturn rings by radio occultation. ICARUS 68:120–166CrossRefGoogle Scholar
  45. Mortensen MD, Høeg P (1998) Inversion of GPS occultation measurements using Fresnel diffraction theory. Geophys Res Lett 25(13):2446–2449CrossRefGoogle Scholar
  46. Mueller II, Beutler G (1992) The international GPS service for geodynamics development and current status. In: Proceedings of the 6th international geodetic symposium on satellite positioning, Columbus, March, pp 823–835Google Scholar
  47. Papas CH (1965) Theory of electromagnetic wave propagation. McGraw-Hill, New YorkGoogle Scholar
  48. Pavelyev AG (1998) On the feasibility of radioholographic investigations of wave fields near the Earth’s radio-shadow zone on the satellite-to-satellite path. J Commun Technol Electron 43(8):875–879Google Scholar
  49. Rangaswamy S (1976) Recovery of atmospheric parameters from the Apollo/Soyuz-ATS-F radio occultation data. Geophys Res Lett 3(8):483–486. doi: 10.1029/GL003i008p00483 CrossRefGoogle Scholar
  50. Rim HJ, Schutz BE (2002) Geoscience Laser Altimeter System (GLAS) algorithm theoretical basis document version 2.2: Precision Orbit Determination (POD), Center for Space Research, The University of Texas at Austin, October 2002Google Scholar
  51. Rocken C, Anthes R, Exner M, Hunt D, Sokolovskiy S, Ware R, Gorbunov M, Schreiner W, Feng D, Herman B, Kuo Y-H, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–29866. doi: 10.1029/97JD0240 CrossRefGoogle Scholar
  52. Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34:949–966CrossRefGoogle Scholar
  53. Schreiner W, Rocken C, Sokolovskiy S, Hunt D (2010) Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing. GPS Solut 14:13–22. doi: 10.1007/s10291-009-0132-5 CrossRefGoogle Scholar
  54. Sokolovskiy SV (2001) Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci 36(3):441–458CrossRefGoogle Scholar
  55. Tapley BD (1973) Statistical orbit determination theory. In: Tapley BD, Szebehely V (eds) Advances in dynamical astronomy. D. Reidel Publishing Co, Holland, pp 396–425CrossRefGoogle Scholar
  56. Tyler GL, Sweetnam DN, Anderson JD, Borutzki SE, Campbell JK, Kursinski ER, Levy GS, Lindal GF, Lyons JR, Wood GE (1989) Voyager radio science observations of Neptune and Triton. Science 246:1466–1473CrossRefGoogle Scholar
  57. Vorob'ev VV, Krasil'nikova TG (1994) Estimation of accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system. Izv Russ Acad Sci Atmos Ocean Phys Engl Transl 29:602–609Google Scholar
  58. Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo HK, Meehan T, Melbourne W, Rocken C, Schreiner W, Sokolovskiy S, Solheim F, Zou X, Anthes R, Businger S (1996) GPS sounding of the atmosphere: preliminary results. Bull Am Meteorol Soc 77:19–40CrossRefGoogle Scholar
  59. Wickert J, Reigber C, Beyerle G, König R, Marquardt C, Schmidt T, Grunwaldt L, Galas R, Meehan TK, Melbourne WG, Hocke K (2001) Atmosphere sounding by GPS radio occultation: first results from CHAMP. Geophys Res Lett 28:3263–3266CrossRefGoogle Scholar
  60. Wickert J, Beyerle G, Hajj GA, Schwieger V, Reigber C (2002) GPS radio occultation with CHAMP: atmospheric profiling utilizing the space-based single difference technique. Geophys Res Lett 29(8):28-1–28-4. doi: 10.1029/2001GL13982 CrossRefGoogle Scholar
  61. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng CZ, Healy SB, Heise S, Huang CY, Jakowski N, Köhler W, Mayer C, Offiler D, Ozawa E, Pavelyev AG, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr Atmos Ocean Sci 20(1):35–50. doi: 10.3319/TAO.2007.12.26.01(F3C) CrossRefGoogle Scholar
  62. Wu JT (1984) Elimination of clock errors in a GPS based tracking system. In: Paper AIAA-84-2052, AIAA/AAS astrodynamics conference, Seattle, AugustGoogle Scholar
  63. Wu SC, Yunck TP, Thornton CL (1987) Reduced-dynamic technique for precise orbit determination of low Earth satellite. In: Proceedings of AAS/AIAA astrodynamics specialist conference, Paper AAS 87–410, Kalispell, Montana, August 1987Google Scholar
  64. Yakovlev OI, Matyugov SS, Vilkov IA (1995) Attenuation and scintillation of radio waves in the Earth’s atmosphere from radio occultation experiments on satellite-to-satellite links. Radio Sci 30(3):591–602. doi: 10.1029/94RS01920 CrossRefGoogle Scholar
  65. Yunck TP, Lindal GF, Liu C-H (1988) The role of GPS in precise Earth observation. In: Proceedings of the IEEE position location and navigation symposium (PLANS 88), 29 November–2 DecemberGoogle Scholar
  66. Yunck T, Liu C-H, Ware R (2000) A history of GPS sounding. Terr Atmos Oceanic Sci 11:1–20Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Shuanggen Jin
    • 1
  • Estel Cardellach
    • 2
  • Feiqin Xie
    • 3
  1. 1.Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghaiChina People’s Republic
  2. 2.Institut d’Estudis Espacials de Catalunya (ICE/IEEC-CSIC)BarcelonaSpain
  3. 3.Texas A&M University-Corpus ChristiCorpus ChristiUSA

Personalised recommendations