Skip to main content

The Role of Hsp70s in the Development and Pathogenicity of Plasmodium Species

  • Chapter
  • First Online:
Heat Shock Proteins of Malaria

Abstract

The development of malaria parasite in the human host is characterized with challenges and for this reason the parasite employs several strategies to ensure its survival. It is generally known that parasites tend to express heat shock proteins (Hsps) in response to adverse conditions that they encounter in host cells. Heat shock proteins play an important role in proteostasis as their main role is to stabilize proteins and to refold misfolded proteins, particularly in the wake of physiological stress. The genome of the main agent of malaria P. falciparum encodes 6 Hsp70 proteins: cytosol-localised (PfHsp70-1/PF3D7_0818900 and PfHsp70-z/PF3D7_0708800); endoplasmic reticulum-based (PfHsp70-2/PF3D7_0917900 and PfHsp70-y/PF3D7_1344200); mitochondrial (PfHsp70-3/ PF3D7_1134000) and one that is exported to the infected erythrocyte (PfHsp70-x/PF3D7_0831700). The general role of Hsp70 proteins is to prevent and to reverse protein misfolding. However, Hsp70s are also capable of facilitating protein trafficking. This chapter constitutes a review of the role of this proteins in the survival of the parasite as well as their function at the host-parasite interface. What is apparent is that these proteins play an important role as house-keepers in the parasite cell. However, their role extends beyond the confines of the parasite cell, regulating both survival and pathogenesis of malaria parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya P, Pallavi R, Chandran S et al (2011) Clinical proteomics of the neglected human malarial parasite Plasmodium vivax. PloS one 6:e26623

    Google Scholar 

  • Akide-Ndunge OB, Tambini E, Giribaldi G et al (2009) Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells. Malar J 8:113

    Article  PubMed  Google Scholar 

  • Alder NN, Shen Y, Brodsky JL et al (2005) The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J Cell Biol 168:389–399

    Google Scholar 

  • Ang D, Georgopoulos C (1989) The heat-shock-regulated grpE gene of Escherichia coli is required for bacterial growth at all temperatures but is dispensable in certain mutant backgrounds. J Bacteriol 171:2748–2755

    PubMed  CAS  Google Scholar 

  • Aunpad R, Somsri S, Na-Bangchang K et al (2009) The effect of mimicking febrile temperature and drug stress on malarial development. Ann Clin Microbiol Antimicrob 8:19. doi: 10.1186/1476-0711-8-19

    Google Scholar 

  • Banumathy G, Singh V, Tatu U (2002) Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J Biol Chem 277:3902–3912

    Article  PubMed  CAS  Google Scholar 

  • Banumathy G, Singh V, Pavithra SR et al (2003) Heat shock protein 90 is essential for Plasmodium falciparum growth in human erythrocytes. J Biol Chem 278:18336–18345

    Article  PubMed  CAS  Google Scholar 

  • Bell SL, Chiang AN, Brodsky JL (2011) Expression of a malarial Hsp70 improves defects in chaperone-dependent activities in ssa1 mutant yeast. PloS one 6 e20047

    Google Scholar 

  • Bianco AE, Favaloro JM, Burkot TR et al (1986) A repetitive antigen of Plasmodium falciparum that is homologous to heat shock protein 70 of Drosophila melanogaster. Proc Natl Acad Sci USA 83:8713–8717

    Article  PubMed  CAS  Google Scholar 

  • Borges TJ, Porto BN, Teixeira CA et al (2010) Prolonged survival of allografts induced by mycobacterial Hsp70 is dependent on CD4 + CD25 + regulatory T cells. PloS one 5:e14264

    Google Scholar 

  • Botha M, Pesce E-R, Blatch GL (2007) The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int J Biochem Cell B 39:1781–1803

    Article  CAS  Google Scholar 

  • Botha M, Chiang AN, Needham PG et al (2011) Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Cell Stress Chaperones 16:389–401

    Google Scholar 

  • Bozdech Z, Ginsburg H (2004) Antioxidant defense in Plasmodium falciparum data mining of the transcriptome. Malaria J.doi:10.1186/1475-2875-3-23

    Google Scholar 

  • Buchberger A, Theyssen H, Schröder H et al (1995) Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J Biol Chem 270:16903–16910

    Article  PubMed  CAS  Google Scholar 

  • Caplan AJ (1999) Hsp90’s secrets unfold: new insights from structural and functional studies. Trends Cell Biol 9:262–268

    Article  PubMed  CAS  Google Scholar 

  • Chacinska A, Lind M, Frazier AE, et al (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–829

    Google Scholar 

  • Chiang AN, Valderramos J-C, Balachandran R et al (2009) Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorg Med Chem 17:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Cockburn IL, Pesce ER, Pryzborski JM et al (2011) Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: inhibition of the plasmodial chaperone PfHsp70-1. Biol Chem 392:431–438

    Article  PubMed  CAS  Google Scholar 

  • Connell P, Ballinger CA, Jiang J et al (2001) Regulation of heat shock protein-mediated protein triage decisions by the co-chaperone CHIP. Nat Cell Bio l3:93–96

    Google Scholar 

  • De Koning-Ward TF, Gilson PR, Boddey JA et al (2009) A newly discovered protein export machine in malaria parasites. Nature 459:945–949

    Article  PubMed  CAS  Google Scholar 

  • Demand J, Lüders J, Hörfeld J (1998) The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18:2023–2028

    PubMed  CAS  Google Scholar 

  • Diamant S, Peres Ben-Zvi A, Bukau B et al (2000) Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J Biol Chem 275:21107–21113

    Article  PubMed  CAS  Google Scholar 

  • Dittmar KD, Pratt WB (1997) Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial hsp90.p60.hsp70-dependent step is sufficient for creating the steroid binding conformation. J Biol Chem 272:13047–13054

    Article  PubMed  CAS  Google Scholar 

  • Driss A, Hibbert JM, Wilson NO et al (2011) Genetic polymorphisms linked to susceptibility to malaria. Malaria J 10:271 doi:10.1186/1475-2875-10-271

    Google Scholar 

  • Dolezal P, Smid O, Rada P et al (2005) Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci USA 102:10924–10929

    Article  PubMed  CAS  Google Scholar 

  • Flom G, Weekes J, Williams JJ et al (2006) Effect of mutation of the TPR and DP2 domains of Sti1 on Hsp90 signaling and interaction in Saccharomyces cerevisiae. Genetics172:41–51

    Google Scholar 

  • Foth BJ, Ralph SA, Tonkin CJ et al (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705–708

    Article  PubMed  CAS  Google Scholar 

  • Foth BJ, Zhang N, Chaal BK et al (2011) Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 10(8):M110.006411

    Google Scholar 

  • Freeman BC, Myers MP, Schumacher R et al (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292

    PubMed  CAS  Google Scholar 

  • French JB, Zhao H, An S, et al (2013) Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. Proc Natl Acad Sci USA 110:2528–2533

    Google Scholar 

  • Frydman J, Nimmesgern E, Ohtsuka K, Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370:111–117

    Article  PubMed  CAS  Google Scholar 

  • Gitau GW, Mandal P, Blatch GL et al (2012) Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 17:191–202

    Google Scholar 

  • Goeckeler JL, Stephens A, Lee P, Caplan AJ et al (2002) Overexpression of yeast Hsp110 homolog Sse1p suppresses ydji thermosensitivity and restores Hsp90-dependent activity. Mol Biol Cell 13:2760–2770

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, Mogk A, Zvi APB et al (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96:13732–13737

    Article  PubMed  CAS  Google Scholar 

  • Hartwig CL, Rosenthal AS, D’Angelo J et al (2009) Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem Pharmacol 77:322–336

    Article  PubMed  CAS  Google Scholar 

  • Hellmann JK, Münter S, Wink M et al (2010) Synergistic and additive effects of epigallocatechin gallate and digitonin on Plasmodium sporozoite survival and motility. PLoS ONE 5:e8682. doi:10.1371/journal.pone.0008682

    Google Scholar 

  • Hiller NL, Bhattacharjee S, van Ooij C et al (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306:1934–1937

    Article  PubMed  CAS  Google Scholar 

  • Höhfeld J, Jentsch S (1997) GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    Article  PubMed  Google Scholar 

  • Hu W-H, Scott AL, Wolfe N et al (2011) Microarray analysis of PBMC after Plasmodium falciparum infection: molecular insights into disease pathogenesis. Nature Precedings hdl.handle.net/10101/npre.2011.5929.1

    Google Scholar 

  • Jiang J, Ballinger C, Wu Y et al (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14:83–94

    Google Scholar 

  • Joshi B, Biswas S, Sharma YD (1992) Effect of heat-shock on Plasmodium falciparum viability, growth and expression of the heat-shock protein 'PFHSP70-I' gene. FEBS Lett 312:91–94

    Google Scholar 

  • Kappes B, Suetterlin BW, Hofer-Warbinek R et al (1993) Two major phosphoproteins of Plasmodium falciparum are heat shock proteins. Mol Biochem Parasitol 59:83–94

    Article  PubMed  CAS  Google Scholar 

  • Karnumaweera ND, Grau GE, Gamage P et al (1992) Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci USA 89:3200–3203

    Article  Google Scholar 

  • Külzer S, Rug M, Brinkmann K et al (2010) Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte. Cell Microbiol 12:1398–1420

    Article  PubMed  Google Scholar 

  • Külzer S, Charnaud S, Dagan T et al (2012) Plasmodium falciparum-encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell Microbiol 14:1784–1795

    Article  PubMed  Google Scholar 

  • Kumar N, Zheng H (1998) Evidence for epitope-specific thymus- independent response against a repeat sequence in a protein antigen. Immunology 94:28–34

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Koski G, Harada M et al (1991) Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. Mol Biochem Parasit 48:47–58

    Article  CAS  Google Scholar 

  • Kumar R, Musiyenko A, Barik S (2003) The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J 2:30

    Article  PubMed  Google Scholar 

  • Kumar A, Tanveer A, Biswas S et al (2010) Nuclear-encoded DnaJ homolog of Plasmodium falciparum interacts with replication ori of the apicoplast genome. Mol Microbiol 75:942–56

    Article  PubMed  CAS  Google Scholar 

  • LaCount DJ, Vignali M, Chettier R et al (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438:103–107

    Article  PubMed  CAS  Google Scholar 

  • Langreth SJ, Jensen JB, Reese RT et al (1978) Fine structure of human malaria in vitro. J. Protozool 25:443–452

    Article  CAS  Google Scholar 

  • Lanzer M, Wickert H, Krohne G et al (2006) Maurer’s clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 36:23–36

    Article  PubMed  CAS  Google Scholar 

  • Leech JH, Barnwell JW, Miller LH et al (1984) Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med 159:1567–75

    Article  PubMed  CAS  Google Scholar 

  • Li J, Sha B (2004) Peptide substrate identification for yeast Hsp40 Ydj1 by screening the phage display library. Biol Proced 6:204–208

    Article  CAS  Google Scholar 

  • Lovegrove FE, Pena-Castillo L, Mohammad N et al (2006) Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria. BMC Genomics 7:295

    Article  PubMed  Google Scholar 

  • Maier AG, Rug M, O’Neill M et al (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum infected human erythrocytes. Cell 134:48–61

    Article  PubMed  CAS  Google Scholar 

  • Mandal AK, Gibney PA, Nillegoda NB et al (2010) Hsp110 Chaperones control client fate determination in the Hsp70–Hsp90 chaperone system. Mol Biol Cell 21:1439–1448

    Article  PubMed  CAS  Google Scholar 

  • Marinkovic M, Diez-Silva M, Pantic I et al (2008) Febrile temperature leads to significant stiffening of Plasmodium falciparum parasitized erythrocytes. Am J Physiol Cell Physiol 296:C59–64

    Google Scholar 

  • Marti M, Good RT, Rug M et al (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933

    Article  PubMed  CAS  Google Scholar 

  • Matambo TS, Odunuga OO, Boshoff A et al (2004) Overproduction, purification, and characterization of the Plasmodium falciparum heat shock protein 70. Protein Expr Purif 33:214–222

    Article  CAS  Google Scholar 

  • Mattei D, Scherf A, Bensaude O et al (1989) A heat shock-like protein from the human malaria parasite Plasmodium falciparum induces autoantibodies. Eur J of Immunol 19:1823–1828

    Article  CAS  Google Scholar 

  • Mun HS, Aosai F, Norose K et al (2000) Toxoplasma gondii Hsp70 as a danger signal in Toxoplasma gondii-infected mice. Cell Stress Chaperones 5:328–335

    Article  PubMed  CAS  Google Scholar 

  • Muralidharan V, Oksman A, Pal P et al (2012) Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 3:1310. doi: 10.1038/ncomms2306

    Article  PubMed  Google Scholar 

  • Nadler SG, Dischino DD, Malacko AR et al (1998) Identification of a binding site on Hsc70 for the immunosuppressant 15-deoxyspergualin. Biochem Biophys Res. Commun 253:176–180

    CAS  Google Scholar 

  • Natalang O, Bischoff E, Deplaine G et al (2008) Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate. BMC Genomics 9:388

    Article  PubMed  Google Scholar 

  • Njunge JM, Ludewig MH, Boshoff A et al (2013) Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: Structure, function, clinical relevance, and drug targets. Curr Pharm Des 19:387–403

    Article  PubMed  CAS  Google Scholar 

  • Nyalwidhe J, Lingelbach K (2006) Proteases and chaperones are the most abundant proteins in the parasitophorous vacuole of Plasmodium falciparum-infected erythrocytes. Proteomics 6:1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Oakley MS, Gerald N, McCutchan TF et al (2011) Clinical and molecular aspects of malaria fever. Trends Parasitol 27:442–449

    Article  PubMed  CAS  Google Scholar 

  • Pallavi R, Acharya P, Chandran R et al (2010) Chaperone expression profiles correlate with distinct physiological states of Plasmodium falciparum in malaria patients. Malaria J 9:236. doi:10.1186/1475-2875-9-236

    Article  Google Scholar 

  • Patankar S, Munasinghe A, Shoaibi A et al (2001) Serial analysis of gene expression in Plasmodium falciparum reveals the global expression profile of erythrocytic stages and the presence of antisense transcripts in the malarial parasite. Mol Biol Cell 12:3114–3125

    Article  PubMed  CAS  Google Scholar 

  • Pavithra SR, Banumathy G, Joy O et al (2004) Recurrent fever promotes Plasmodium falciparum development in human erythrocytes. J Biol Chem 279:46692–46699

    Article  PubMed  CAS  Google Scholar 

  • Pesce ER, Acharya P, Tatu U et al (2008) Functional analysis of the Plasmodium falciparum Hsp40, Pfj4 associates with heat shock protein 70 and shows similar heat induction and localisation patterns. Int J Biochem Cell Biol 40:2914–2926

    Article  PubMed  CAS  Google Scholar 

  • Pesce ER, Cockburn IL, Goble JL et al (2010) Malaria heat shock proteins: drug targets that chaperone other drug targets. Infect Disord Drug Targets 10:147–57

    Article  PubMed  CAS  Google Scholar 

  • Pfanner N, Geissler A (2001) Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2:339–349

    Article  PubMed  CAS  Google Scholar 

  • Pfanner N, Wiedemann N (2002) Mitochondrial protein import: two membranes, three translocases. Curr Opin Cell Biol 14:400–411

    Article  PubMed  CAS  Google Scholar 

  • Polier S, Dragovic Z, Hartl FU et al (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068–1079

    Article  PubMed  CAS  Google Scholar 

  • Ramya TNC, Surolia NN, Surolia A (2006) 15-Deoxyspergualin modulates Plasmodium falciparum heat shock protein function. Biochem. Biophys Res Commun 348:585–592

    Article  CAS  Google Scholar 

  • Ramya TNC, Karmodiya K, Surolia A et al (2007) 15-Deoxyspergualin primarily targets the trafficking of apicoplast proteins in Plasmodium falciparum. J Biol Chem 282:6388–6397

    Article  PubMed  CAS  Google Scholar 

  • Raviol H, Bukau B, Mayer MP (2006) Human and yeast Hsp110 chaperones exhibit functional differences. FEBS Lett 580:168–174

    Article  PubMed  CAS  Google Scholar 

  • Saridaki T, Sanchez CP, Pfahler J et al (2008) A conditional export system provides new insights into protein export in Plasmodium falciparum-infected erythrocytes. Cell Microbiol 10:2483–2495

    Article  PubMed  CAS  Google Scholar 

  • Sargeant TJ, Marti M, Caler E et al (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol 7:R12

    Google Scholar 

  • Sato S, Wilson RJ (2005) Organelle-specific cochaperonins in apicomplexan parasites. Mol Biochem Parasitol 141:133–143

    Article  PubMed  CAS  Google Scholar 

  • Sharma YD (1992) Structure and possible function of heat-shock proteins in Plasmodium falciparum. Comp Biochem Physiol B 102:437–444

    PubMed  CAS  Google Scholar 

  • Sherman MY, Goldberg AL (1993) Heat shock of Escherichia coli increases binding of DnaK (the hsp70 Homolog) to polypeptides by promoting its phosphorylation. Proc Natl Acad Sci USA 90:8648–8652

    Article  PubMed  CAS  Google Scholar 

  • Shonhai A (2010) Plasmodial heat shock proteins: targets for chemotherapy. FEMS Immunol Med Microbiol 58:61–74

    Article  PubMed  CAS  Google Scholar 

  • Shonhai A, Boshoff A, Blatch GL (2005) Plasmodium falciparum heat shock protein 70 is able to suppress the thermosensitivity of an Escherichia coli DnaK mutant strain. Mol Genet Genomics 4:70–78

    Article  Google Scholar 

  • Shonhai A, Boshoff A, Blatch GL (2007) The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. Protein Sci 16:1803–1818

    Article  PubMed  CAS  Google Scholar 

  • Shonhai A, Botha M, de Beer TAP et al (2008) Structure-function study Plasmodium falciparum heat shock protein 70 using three dimensional modeling and in vitro analysis. Protein Peptide Lett 15:1117–1125

    Article  CAS  Google Scholar 

  • Shonhai A, Maier AG, Przyborski J et al (2011) Intracellular protozoan parasites of humans: The role of molecular chaperones in development and pathogenesis. Protein Peptide Lett 18:143–157

    Article  CAS  Google Scholar 

  • Å lapeta J, Keithly JS (2004) Cryptosporidium parvum mitochondrial-type Hsp70 targets homologous and heterologous mitochondria. Eukaryot Cell 3:483–494

    Article  PubMed  Google Scholar 

  • Smith DF, Sullivan WP, Marion TN et al (1993) Identification of a 60-kilodalton stress-related protein, p60, which interacts with hsp90 and hsp70. Mol Cell Biol 13:869–876

    PubMed  CAS  Google Scholar 

  • Sondermann H, Scheufler C, Schneider C et al (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291:1553–1557

    Article  PubMed  CAS  Google Scholar 

  • Stephens LL, Shonhai A, Blatch GL (2011) The co-expression of the Plasmodium falciparum molecular chaperone, PfHsp70, increases the heterologous production of the potential drug target GTP cyclohydrolase I, PfGCHI. Protein Expres Purif 77:159–165

    Article  PubMed  CAS  Google Scholar 

  • Takenaka IM, Leung SM, McAndrew SJ et al (1995) Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences. J Biol Chem 270:19839–19844

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu T, Ogura T, Tatsuta T et al (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in E. coli. Mol Microbiol 30:567–581

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequenceweighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

  • Thulasiraman V, Yang C-F, Frydman JF (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18:85–95

    Article  PubMed  CAS  Google Scholar 

  • Trott A, Shaner L, Morano KA (2005) The molecular chaperone Sse1 and the growth control protein kinase Sch9 collaborate to regulate protein kinase A activity in Saccharomyces cerevisiae. Genetics 170:1009–1021

    Google Scholar 

  • Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164:341–346

    Article  PubMed  CAS  Google Scholar 

  • Tuteja R (2007) Unraveling the components of protein translocation pathway in human malaria parasite Plasmodium falciparum. Arch Biochem Biophys 467:249–260

    Article  PubMed  CAS  Google Scholar 

  • VanBogelen RA, Abshire KZ, Moldover B et al (1997) Escherichia coli proteome analysis using the gene-protein database. Electrophoresis 8:1243–1251

    Article  Google Scholar 

  • Vincensini L, Richert S, Blisnick T et al (2005) Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol Cell Proteomics 4:582–593

    Article  PubMed  CAS  Google Scholar 

  • Wegele H, Wandinger SK, Schmid AB et al (2006) Substrate transfer from the chaperone Hsp70 to Hsp90. J Mol Biol 356:802–811

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Hartl FU (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J 19:5930–5940

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Blatch GL (2009) A novel twist to protein secretion in eukaryotes. Trends Parasitol 25:147–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work has been received from the funding from the Deutsche Forschungsgemeinschaft (DFG) German-African Cooperation Projects in Infectology grant (Ref: LI 402/14-1) and the University of Zululand. The author is grateful to the Alexander von Humboldt Foundation (Germany) for the award of a Georg Foster Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addmore Shonhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shonhai, A. (2014). The Role of Hsp70s in the Development and Pathogenicity of Plasmodium Species. In: Shonhai, A., Blatch, G. (eds) Heat Shock Proteins of Malaria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7438-4_3

Download citation

Publish with us

Policies and ethics