Skip to main content

Protein Phosphorylation and Dephosphorylation in Plant Immune Signaling Systems

  • Chapter
  • First Online:
Book cover PAMP Signals in Plant Innate Immunity

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 21))

  • 1881 Accesses

Abstract

Protein phosphorylation plays a central role in the plant immune response signaling. PAMP signals induce rapid and transient phosphorylation of several proteins/enzymes involved in defense signaling system. The proteins that make up the signal transduction pathway are present in the cell prior to the perception of PAMP elicitor signal. On perception of the signal these proteins are activated by post-translational modifications and conformational changes induced by phosphorylation. Protein phosphorylation is carried out by different protein kinases. PAMP signals are perceived by plant pattern recognition receptors (PRRs), which belong to the family of receptor-like kinases (RLKs). The PAMPs have been shown to activate the RLKs by autophosphorylation by their own serine/threonine kinase. The autophosphorylation of the receptor kinases takes place within few seconds to few minutes after PAMP treatment and the autophosphorylated RLKs have been shown to be essential for PAMP signaling in plants. Calcium-dependent protein kinases (CDPKs) and mitogen-activated protein kinases (MAPKs) regulate expression of various enzymes involved in ROS, salicylate, jasmonate, ethylene, and abscisic acid signaling systems by inducing protein/enzyme phosphorylation. Protein kinase C is involved in phosphorylation of some transcription factors. His kinase family protein kinase takes part in ethylene signaling system. Protein dephosphorylation may also be involved in defense signaling and the phosphatases negatively regulate innate immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony RG, Henriques R, Helfer A, Meszaros T, Rios G, Testerink C, Munnik T, Deak M, Koncz C, Rogre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    CAS  PubMed  Google Scholar 

  • Anthony RG, Khan S, Costa J, Pais MS, Bögre L (2006) The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J Biol Chem 281:37536–37546

    CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gómez-Gómez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    CAS  PubMed  Google Scholar 

  • Assad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15:5118–5129

    Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijper M, Menke FLH (2007) Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Lam BC-H (1998) Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci 3:342–346

    Google Scholar 

  • Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422

    CAS  PubMed  Google Scholar 

  • Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    CAS  PubMed  Google Scholar 

  • Camoni L, Fullone MR, Marra M, Aduccia P (1998a) The plasma membrane H+-ATPase from maize roots is phosphorylated in the C-terminal domain by a calcium-dependent protein kinase. Physiol Plant 104:549–555

    CAS  Google Scholar 

  • Camoni L, Harper JF, Palmgren MG (1998b) 14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). FEBS Lett 430:381–384

    CAS  PubMed  Google Scholar 

  • Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–362

    CAS  PubMed  Google Scholar 

  • Chappell J, Hahlbrock K, Boller T (1984) Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia-lyase. Planta 161:475–480

    CAS  Google Scholar 

  • Cheng S-H, Willmann MR, Chen H-C, Sheen J (2002) Calcium signaling through protein kinases: the Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    CAS  PubMed  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, Yoon HW, Chung WS, Lim CO, Lee SY, Cho MJ (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    CAS  PubMed  Google Scholar 

  • Chinchilla D, Boller T, Robatzek S (2007a) Flagellin signaling in plant immunity. Adv Exp Med Biol 598:358–371

    PubMed  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007b) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    CAS  PubMed  Google Scholar 

  • Choi MS, Kim MC, Yoo JH, Moon BC, Koo SC, Park BO, Lee JH, Koo YD, Han HJ, Lee SY, Chung WS, Lim CO, Cho MJ (2005) Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.). J Biol Chem 280:40820–40831

    CAS  PubMed  Google Scholar 

  • Chung H-J, Sehnke PC, Fert RJ (1999) The 14-3-3 proteins: cellular regulation of plant metabolism. Trends Plant Sci 4:367–371

    PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Frelaldenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    CAS  PubMed  Google Scholar 

  • Conrath U, Silva A, Klessig DF (1987) Protein dephosphorylation mediates salicylic acid-induced expression of PR1 genes in tobacco. Plant J 11:747–757

    Google Scholar 

  • Dardick C, Ronald P (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2:e2

    PubMed  Google Scholar 

  • Davies DR, Bindschedler LV, Strickland TS, Bolwell GP (2006) Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance. J Exp Bot 57:1817–1827

    CAS  PubMed  Google Scholar 

  • Desikan R, Cheung M-K, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot 55:205–212

    CAS  PubMed  Google Scholar 

  • Després C, Subramaniam R, Matton DPR, Brisson N (1995) The activation of the potato PR-10a gene requires the phosphorylation of the nuclear factor, PBF-1. Plant Cell 7:589–598

    PubMed  Google Scholar 

  • Devarenne TP, Ekengren SK, Pedley KF, Martin GB (2006) Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO J 25:255–265

    CAS  PubMed  Google Scholar 

  • Dietrich A, Mayer JE, Hahlbrock K (1990) Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem 265:6360–6368

    CAS  PubMed  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    CAS  PubMed  Google Scholar 

  • Dröge-Laser W, Kaiser A, Lindsay WP, Halker BA, Loake GJ, Doerner P, Dixon RA, Lamb C (1997) Rapid stimulation of a soybean protein-serine kinase which phosphorylates a novel bZIP DNA-binding protein, G/HBF-1 during the induction of early transcription-dependent defenses. EMBO J 16:726–738

    PubMed  Google Scholar 

  • Eckardt NA (2008) Chitin signaling in plants: insights into the perception of fungal pathogens and rhizobacterial strains. Plant Cell 20:241–243

    CAS  PubMed  Google Scholar 

  • Ellard-Ivey M, Hopkins RB, White TJ, Lomax TL (1999) Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini (Cucurbita pepo L.). Plant Mol Biol 39:199–208

    CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    CAS  PubMed  Google Scholar 

  • Felix G, Grosskopf DG, Regenass M, Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci U S A 88:8831–8834

    CAS  PubMed  Google Scholar 

  • Ferl RJ (2004) 14-3-3 proteins: regulation of signal-induced events. Physiol Plant 120:173–178

    CAS  PubMed  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98:373–378

    CAS  PubMed  Google Scholar 

  • Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A, Mattei B, Jensen ON, Aducci P, Palmgren MG (1999) Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J Biol Chem 274:36774–36780

    CAS  PubMed  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    CAS  PubMed  Google Scholar 

  • Furihata T, Manuyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988–1993

    CAS  PubMed  Google Scholar 

  • Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X, Zhang Y (2009) Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 23:34–44

    Google Scholar 

  • Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiol 113:269–279

    CAS  PubMed  Google Scholar 

  • Gerber IB, Laukens K, Witters E, Dubery IA (2006) Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells. Plant Physiol Biochem 44:369–379

    CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155–1163

    PubMed  Google Scholar 

  • Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46:1902–1914

    CAS  PubMed  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    CAS  PubMed  Google Scholar 

  • Harmon AC (2003) Calcium-regulated protein kinases of plants. Gravit Space Biol Bull 16(2):83–90

    PubMed  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs – a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    CAS  PubMed  Google Scholar 

  • He H, Li J (2008) Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves. Biochem Biophys Res Commun 371:883–888

    CAS  PubMed  Google Scholar 

  • He P, Shan L, Sheen J (2007) Elicitation and suppression of microbe-associated molecular pattern-triggered immunity in plant-microbe interactions. Cell Microbiol 9:1385–1396

    CAS  PubMed  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104:12217–12222

    CAS  PubMed  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    CAS  PubMed  Google Scholar 

  • Huang J-F, Teyton L, Harper JF (1996) Activation of a Ca2+-dependent protein kinase involves intramolecular binding of a calmodulin-like regulatory domain. Biochemistry 35:13222–13230

    CAS  PubMed  Google Scholar 

  • Huang Y, Li H, Gupta R, Morris PC, Luan S, Kieber JJ (2000) AtMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiol 122:1301–1310

    CAS  PubMed  Google Scholar 

  • Iizasa E, Mitsutomi M, Nagano Y (2010) Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J Biol Chem 285:2996–3004

    CAS  PubMed  Google Scholar 

  • Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H (2011) Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell 23:1153–1170

    CAS  PubMed  Google Scholar 

  • Johnson RR, Wagner RL, Verhey SD, Walker-Simmons MK (2002) The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol 130:837–846

    PubMed  Google Scholar 

  • Kanzaki H, Saitoh H, Takahashi Y, Berberich T, Ito A, Kamoun S, Terauchi R (2008) NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta 228:977–987

    CAS  PubMed  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb CA (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    CAS  PubMed  Google Scholar 

  • Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E, Cobb MH (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615

    CAS  PubMed  Google Scholar 

  • Kim CY, Liu Y, Thorne ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S (2003a) Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15:2707–2718

    CAS  PubMed  Google Scholar 

  • Kim K-N, Cheong YH, Grant JJ, Pandey GK, Luan S (2003b) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423

    CAS  PubMed  Google Scholar 

  • Klimczak LJ, Collinge MA, Farini D, Guiliano G, Walker JC, Cashmore AR (1995) Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell 7:105–115

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid signaling. Plant Cell 16:1163–1177

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylation of ABA response element –binding factors. Plant J 44:939–949

    CAS  PubMed  Google Scholar 

  • Köhler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J 32:185–194

    PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated-mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97(6):2940–2945

    CAS  PubMed  Google Scholar 

  • Kwak SH, Lee SH (1997) The requirements for Ca2+, protein phosphorylation, and dephosphorylation for ethylene signal transduction in Pisum sativum L. Plant Cell Physiol 38:1142–1149

    CAS  PubMed  Google Scholar 

  • Lecourieux – Ouaked D, Pugin A, Lebrun-Garcia A (2000) Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Mol Plant Microbe Interact 13:821–829

    PubMed  Google Scholar 

  • Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641

    CAS  PubMed  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249–269

    CAS  PubMed  Google Scholar 

  • Li J, Lee Y-R, Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116:785–795

    CAS  PubMed  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assman SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    CAS  PubMed  Google Scholar 

  • Ligterink W, Hirt T (2000) MAP kinase pathways in plants: versatile signaling tools. Int Rev Cytol 201:209–258

    Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and post-invasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhang S, Klessig DF (2000) Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. Mol Plant Microbe Interact 13:118–124

    CAS  PubMed  Google Scholar 

  • Liu Y, Jin H, Yang K, Kim C, Baker B, Zhang S (2003) Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant J 34:149–160

    CAS  PubMed  Google Scholar 

  • Liu Y, Kong X, Pan J, Li D (2010) VIP1: linking Agrobacterium-mediated transformation to plant immunity? Plant Cell Rep 29:805–812

    CAS  PubMed  Google Scholar 

  • Lohmann GV, Shimoda Y, Nielsen W, Jørgensen FG, Grossmann C, Sandal N, Sørensen K, Thirup S, Madsen LH, Tabata S, Sato S, Stougaard J, Radutoiu S (2010) Evolution and regulation of the Lotus japonica LysM receptor gene family. Mol Plant Microbe Interact 23:510–521

    CAS  PubMed  Google Scholar 

  • Lu C, Han MH, Guevara-Garcia A, Fedoroff V (2002) Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci U S A 99:15812–15817

    CAS  PubMed  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    CAS  PubMed  Google Scholar 

  • Mayrose M, Bonshtien A, Sessa GJ (2004) LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses. J Biol Chem 279:14819–14827

    CAS  PubMed  Google Scholar 

  • Meng X, Xu J, He Y, Yang K-Y, Mordorski B, Liu Y, Zhang S (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25:1126–1142

    Google Scholar 

  • Menke FLH, van Pelt JA, Pieterse CMJ, Klessig DF (2004) Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16:897–907

    CAS  PubMed  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    CAS  PubMed  Google Scholar 

  • Montesano M, Brader G, Palva ET (2003) Pathogen-derived elicitors: searching for receptors in plants. Mol Plant Pathol 4:73–78

    CAS  PubMed  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    CAS  PubMed  Google Scholar 

  • Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream and downstream of reactive oxygen species production. Plant Cell 14:3089–3099

    CAS  PubMed  Google Scholar 

  • Nakagami H, Soukupová H, Schikora A, Zársk V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704

    CAS  PubMed  Google Scholar 

  • Nasrallah JB (2000) Cell-cell signalling in the self-incompatible response. Curr Opin Plant Biol 3:368–373

    CAS  PubMed  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JD (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    CAS  PubMed  Google Scholar 

  • Nühse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275:7521–7526

    PubMed  Google Scholar 

  • Nühse TS, Boller T, Peck SC (2003) A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin. J Biol Chem 278:45248–45254

    PubMed  Google Scholar 

  • Nühse TS, Stenballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    PubMed  Google Scholar 

  • Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282–1288

    CAS  PubMed  Google Scholar 

  • Peck SC, Nühse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467–1475

    CAS  PubMed  Google Scholar 

  • Pei ZM, Ward JM, Harper JF, Schroeder JI (1996) A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J 15:6564–6574

    CAS  PubMed  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    CAS  PubMed  Google Scholar 

  • Piedras P, Hammond-Kosack KE, Harrison K, Jones JDG (1998) Rapid, Cf-9- and Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol Plant Microbe Interact 11:1155–1166

    CAS  Google Scholar 

  • Postel S, Kufner I, Beueter C, Mazzotta S, Schwedt A, Borlotti A, Halter T, Kemmerling B, Nürnberger T (2010) The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur J Cell Biol 89:169–174

    CAS  PubMed  Google Scholar 

  • Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559–565

    CAS  PubMed  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427:858–861

    CAS  PubMed  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542

    CAS  PubMed  Google Scholar 

  • Roberts MR (2000) Regulatory 14-3-3 protein-protein interactions in plant cells. Curr Opin Plant Biol 3:400–405

    CAS  PubMed  Google Scholar 

  • Roberts MR, Bowles DJ (1999) Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol 119:1243–1250

    CAS  PubMed  Google Scholar 

  • Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JD (1999) Rapid Avr9- and Cf-9 – dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11:273–287

    CAS  PubMed  Google Scholar 

  • Romeis T, Piedras P, Jones JD (2000) Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12:803–815

    CAS  PubMed  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    CAS  PubMed  Google Scholar 

  • Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci U S A 100:14577–14580

    CAS  PubMed  Google Scholar 

  • Saijo Y (2010) ER quality control of immune receptors and regulators in plants. Cell Microbiol 12:716–724

    CAS  PubMed  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11:263–272

    CAS  PubMed  Google Scholar 

  • Schaller GE, Harmon AC, Sussman MR (1992) Characterization of a calcium- and lipid-dependent protein kinase associated with the plasma membrane of oat. Biochemistry 31:1721–1727

    CAS  PubMed  Google Scholar 

  • Schulze B, Mentzel T, Jehle A, Mueller K, Beeler S, Boller T, Felix G, Chinchilla D (2010) Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 285:9444–9451

    CAS  PubMed  Google Scholar 

  • Seo S, Sano H, Ohashi Y (1999) Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell 11:289–298

    CAS  PubMed  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinase and stress signal transduction in plants. Science 274:1900–1902

    CAS  PubMed  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishi-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    CAS  PubMed  Google Scholar 

  • Shiu S-H, Bleecker AB (2001a) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 113:RE22

    Google Scholar 

  • Shiu S-H, Bleecker AB (2001b) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768

    CAS  PubMed  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    CAS  PubMed  Google Scholar 

  • Spanu P, Grosskopf DG, Felix G, Boller T (1991) The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein-phosphorylation and dephosphorylation. Plant Physiol 106:529–535

    Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriquez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to non-host resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    CAS  PubMed  Google Scholar 

  • Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457

    CAS  PubMed  Google Scholar 

  • Subramaniam R, Desprěs C, Brisson N (1997) A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato. Plant Cell 9:653–664

    CAS  PubMed  Google Scholar 

  • Sugiyama Y, Uraji M, Watanabe-Sugimoto M, Okuma E, Munemasa S, Shimoishi Y, Nakamura Y, Mori IC, Iwai S, Murata Y (2012) FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells. J Exp Bot 63:1357–1365

    CAS  PubMed  Google Scholar 

  • Suzuki K, Shinshi H (1995) Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with fungal elicitor. Plant Cell 7:639–647

    CAS  PubMed  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19:805–818

    CAS  PubMed  Google Scholar 

  • Tavernier E, Wendehenne J-P, Blein J-P, Pugin A (1995) Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of a hypersensitive reaction in tobacco cells. Plant Physiol 109:1025–1031

    CAS  PubMed  Google Scholar 

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signalling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    CAS  PubMed  Google Scholar 

  • Testernik C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Google Scholar 

  • Tischner R, Koltermann M, Haesse H, Plath M (2010) Early responses of Arabidopsis thaliana to infection by Verticillium longisporum. Physiol Mol Plant Pathol 74:419–427

    CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in plant defense response. Proc Natl Acad Sci U S A 99:517–522

    CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637

    CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994a) Plant defense response to fungal pathogens. Activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation. Plant Physiol 104:209–215

    CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Higgins VJ, Blumwald E (1994b) Plant defense responses to fungal pathogens. II. G protein mediated changes in host plasma membrane redox reactions. Plant Physiol 106:97–103

    CAS  PubMed  Google Scholar 

  • Viard MP, Martin F, Pugin A, Blein J-P (1994) Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol 104:1245–1249

    CAS  PubMed  Google Scholar 

  • Vidhyasekaran P (2007) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms, IIth edn. CRC Press/Taylor & Francis Group, Boca Raton, p510

    Google Scholar 

  • Vitart V, Christodoulou J, Huang JF, Chazin WJ, Harper JF (2000) Intramolecular activation of a Ca2+-dependent protein kinase is disrupted by insertions in the tether that connects the calmodulin-like domain to the kinase. Biochemistry 39:4004–4011

    CAS  PubMed  Google Scholar 

  • Waller F, Müller A, Chung K-M, Yap Y-K, Nakamura K, Weiler E, Sano H (2006) Expression of a WIPK-activated transcription factor results in increase of endogenous salicylic acid and pathogen resistance in tobacco plants. Plant Cell Physiol 47:1169–1174

    CAS  PubMed  Google Scholar 

  • Wan J, Zhang S, Stacey G (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 5:125–135

    CAS  PubMed  Google Scholar 

  • Wan J, Zhang X-C, Neece D, Ramonell KM, Clough S, Kim S-Y, Stacey MG, Stacey G (2008a) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    CAS  PubMed  Google Scholar 

  • Wan J, Zhang X-C, Stacey G (2008b) Chitin signaling and plant disease resistance. Plant Signal Behav 3:831–833

    PubMed  Google Scholar 

  • Wang P, Song C-P (2008) Guard-cell signaling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    CAS  PubMed  Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    CAS  PubMed  Google Scholar 

  • Wang KLC, Li H, Ecker IP (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S155

    CAS  PubMed  Google Scholar 

  • Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005a) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase. Plant Cell 17:1685–1703

    CAS  PubMed  Google Scholar 

  • Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, Chory J (2005b) Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell 8:855–865

    CAS  PubMed  Google Scholar 

  • Wang W, Esch JJ, Shiu S-H, Agula H, Binder BM, Chang C, Patterson S, Bleecker AB (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ER1 ethylene receptor of Arabidopsis. Plant Cell 18:3429–3442

    CAS  PubMed  Google Scholar 

  • Ward JM, Pei Z-M, Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833–844

    CAS  PubMed  Google Scholar 

  • Wendehenne D, Lamotte O, Frachisse J-M, Barbier-Brygoo H, Pugin A (2002) Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 14:1937–1951

    CAS  PubMed  Google Scholar 

  • Xing T, Higgins VJ, Blumwald E (1996) Regulation of plant defense response to fungal pathogens: two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase. Plant Cell 8:555–564

    CAS  PubMed  Google Scholar 

  • Xing T, Higgins VJ, Blumwald E (1997) Identification of G proteins mediating fungal elicitor-induced dephosphorylation of host plasma membrane H+-ATPase. J Exp Biol 48:229–237

    CAS  Google Scholar 

  • Xing Y, Jia W, Zhang J (2007) AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H202 production in Arabidopsis. J Exp Bot 58:2969–2981

    CAS  PubMed  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    CAS  PubMed  Google Scholar 

  • Xiong I, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    CAS  PubMed  Google Scholar 

  • Yaffe MB (2002) How do 14-3-3 proteins work? – Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513:53–57

    CAS  PubMed  Google Scholar 

  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14-3-3 phosphopeptide binding specificity. Cell 91:961–971

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Suzuki K, Shinshi H (1999) Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J 20:571–579

    CAS  PubMed  Google Scholar 

  • Yang KY, Liu YD, Zhang SQ (2001) Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A 98:741–746

    CAS  PubMed  Google Scholar 

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi S, Takahashi F, Alonso J, Ecker JR, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43:1473–1483

    CAS  PubMed  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    CAS  PubMed  Google Scholar 

  • Yoshioka K, Sugie K, Park HJ, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant Microbe Interact 14:725–736

    CAS  PubMed  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JD, Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    CAS  PubMed  Google Scholar 

  • Zegzouti H, Jones B, Frasse P, Marty C, Maitre B, Latch A, Pech JC, Bouzayen M (1999) Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. Plant J 589–600

    Google Scholar 

  • Zhang S, Liu Y, Klessig DF (2000) Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. Plant J 23:339–347

    CAS  PubMed  Google Scholar 

  • Zhang L, Liu BF, Liang S, Jones RL, Lu YT (2002) Molecular and biochemical characterization of a calcium/calmodulin-binding protein kinase from rice. Biochem J 368:145–167

    CAS  PubMed  Google Scholar 

  • Zhang AY, Jiang MY, Zhang JH, Tan M, Hu XL (2006) Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    CAS  PubMed  Google Scholar 

  • Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z (2007) Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J 52:1066–1079

    CAS  PubMed  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidhyasekaran, P. (2014). Protein Phosphorylation and Dephosphorylation in Plant Immune Signaling Systems. In: PAMP Signals in Plant Innate Immunity. Signaling and Communication in Plants, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7426-1_9

Download citation

Publish with us

Policies and ethics