From Three-Dimensional GPCR Structure to Rational Ligand Discovery

  • Albert J. Kooistra
  • Rob Leurs
  • Iwan J. P. de Esch
  • Chris de Graaf
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 796)


This chapter will focus on G protein-coupled receptor structure-based virtual screening and ligand design. A generic virtual screening workflow and its individual elements will be introduced, covering amongst others the use of experimental data to steer the virtual screening process, ligand binding mode prediction, virtual screening for novel ligands, and rational structure-based virtual screening hit optimization. An overview of recent successful structure-based ligand discovery and design studies shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands for GPCRs. Moreover, the recently solved GPCR crystal structures have further increased the opportunities in structure-based ligand discovery for this pharmaceutically important protein family. The current chapter will discuss several challenges in rational ligand discovery based on GPCR structures including: (i) structure-based identification of ligands with specific effects on GPCR mediated signaling pathways, and (ii) virtual screening and structure-based optimization of fragment-like molecules.


Drug design In Silico methods Virtual screening Docking Crystal structures 


  1. Andrews SP, Benjamin T (2013) Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A2A receptor. MedChemComm 4(1):52–67. doi: 10.1039/c2md20164j Google Scholar
  2. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. doi: 10.1021/jm901137j PubMedGoogle Scholar
  3. Baker JG (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 144(3):317–322. doi: 10.1038/sj.bjp.0706048 PubMedGoogle Scholar
  4. Baker JG (2010) The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br J Pharmacol 160(5):1048–1061. doi: 10.1111/j.1476-5381.2010.00754.x PubMedGoogle Scholar
  5. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations of G protein-coupled receptors. Methods Neurosci 25:366–428. doi: 10.1016/S1043-9471(05)80049-7
  6. Barillari C, Marcou G, Rognan D (2008) Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores. J Chem Inf Model 48(7):1396–1410. doi: 10.1021/ci800064z PubMedGoogle Scholar
  7. Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman S (2004) G protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad Sci U S A 101(31):11304–11309. doi: 10.1073/pnas.0401862101 PubMedGoogle Scholar
  8. Becker OM, Dhanoa DS, Marantz Y, Chen D, Shacham S, Cheruku S, Heifetz A, Mohanty P, Fichman M, Sharadendu A, Nudelman R, Kauffman M, Noiman S (2006) An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J Med Chem 49(11):3116–3135. doi: 10.1021/jm0508641 PubMedGoogle Scholar
  9. Bissantz C, Bernard P, Hibert M, Rognan D (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins 50(1):5–25. doi: 10.1002/prot.10237 PubMedGoogle Scholar
  10. Blättermann S, Peters L, Ottersbach PA, Bock A, Konya V, Weaver CD, Gonzalez A, Schroder R, Tyagi R, Luschnig P, Gab J, Hennen S, Ulven T, Pardo L, Mohr K, Gutschow M, Heinemann A, Kostenis E (2012) A biased ligand for OXE-R uncouples G alpha and G beta gamma signaling within a heterotrimer. Nat Chem Biol 8(7):631–638. doi: 10.1038/nchembio.962 PubMedGoogle Scholar
  11. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463(7277):108–112. doi: 10.1038/nature08650 PubMedGoogle Scholar
  12. Carlsson J, Yoo L, Gao ZG, Irwin JJ, Shoichet BK, Jacobson KA (2010) Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 53(9):3748–3755. doi: 10.1021/jm100240h PubMedGoogle Scholar
  13. Carlsson J, Coleman RG, Setola V, Irwin JJ, Fan H, Schlessinger A, Sali A, Roth BL, Shoichet BK (2011) Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol 7(11):769–778. doi: 10.1038/nchembio.662 PubMedGoogle Scholar
  14. Cavasotto CN (2011) Homology models in docking and high-throughput docking. Curr Top Med Chem 11(12):1528–1534. doi: 10.2174/156802611795860951 PubMedGoogle Scholar
  15. Cavasotto CN, Orry AJ, Murgolo NJ, Czarniecki MF, Kocsi SA, Hawes BE, O’Neill KA, Hine H, Burton MS, Voigt JH, Abagyan RA, Bayne ML, Monsma FJ Jr (2008) Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem 51(3):581–588. doi: 10.1021/jm070759m PubMedGoogle Scholar
  16. Chen JZ, Wang J, Xie XQ (2007) GPCR structure-based virtual screening approach for CB2 antagonist search. J Chem Inf Model 47(4):1626–1637. doi: 10.1021/ci7000814 PubMedGoogle Scholar
  17. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265. doi: 10.1126/science.1150577 PubMedGoogle Scholar
  18. Cherezov V, Abola E, Stevens RC (2010) Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol 654:141–168. doi: 10.1007/978-1-60761-762-4_8 PubMedGoogle Scholar
  19. Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330(6007):1091–1095. doi: 10.1126/science.1197410 PubMedGoogle Scholar
  20. Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54(13):4283–4311. doi: 10.1021/jm200371q PubMedGoogle Scholar
  21. Congreve M, Andrews SP, Dore AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M, Marshall FH (2012) Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem 55(5):1898–1903. doi: 10.1021/jm201376w PubMedGoogle Scholar
  22. Costanzi S, Vilar S (2012) In silico screening for agonists and blockers of the beta(2) adrenergic receptor: implications of inactive and activated state structures. J Comput Chem 33(5):561–572. doi: 10.1002/jcc.22893 PubMedGoogle Scholar
  23. Costanzi S, Santhosh Kumar T, Balasubramanian R, Kendall Harden T, Jacobson KA (2012) Virtual screening leads to the discovery of novel non-nucleotide P2Y(1) receptor antagonists. Bioorg Med Chem 20(17):5254–5261. doi: 10.1016/j.bmc.2012.06.044 PubMedGoogle Scholar
  24. de Graaf C, Rognan D (2008) Selective structure-based virtual screening for full and partial agonists of the beta2 adrenergic receptor. J Med Chem 51(16):4978–4985. doi: 10.1021/jm800710x PubMedGoogle Scholar
  25. de Graaf C, Rognan D (2009) Customizing G protein-coupled receptor models for structure-based virtual screening. Curr Pharm Des 15(35):4026–4048. doi: 10.2174/138161209789824786
  26. de Graaf C, Foata N, Engkvist O, Rognan D (2008) Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. Proteins 71(2):599–620. doi: 10.1002/prot.21724 PubMedGoogle Scholar
  27. de Graaf C, Rein C, Piwnica D, Giordanetto F, Rognan D (2011a) Structure-based discovery of allosteric modulators of two related class B G-protein-coupled receptors. ChemMedChem 6(12):2159–2169. doi: 10.1002/cmdc.201100317 PubMedGoogle Scholar
  28. de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, Iwata S, Shimamura T, Stevens RC, de Esch IJ, Leurs R (2011b) Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J Med Chem 54(23):8195–8206. doi: 10.1021/jm2011589 PubMedGoogle Scholar
  29. de Graaf C, Vischer HF, de Kloe GE, Kooistra AJ, Nijmeijer S, Kuijer M, Verheij MH, England PJ, van Muijlwijk-Koezen JE, Leurs R, de Esch IJ (2013) Small and colorful stones make beautiful mosaics: fragment-based chemogenomics. Drug Discov Today 18(7–8):323–330. doi: 10.1016/j.drudis.2012.12.003 PubMedGoogle Scholar
  30. de Kloe GE, Bailey D, Leurs R, de Esch IJ (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14(13–14):630–646. doi: 10.1016/j.drudis.2009.03.009 PubMedGoogle Scholar
  31. Deng Z, Chuaqui C, Singh J (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47(2):337–344. doi: 10.1021/jm030331x PubMedGoogle Scholar
  32. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108(32):13118–13123. doi: 10.1073/pnas.1104614108 PubMedGoogle Scholar
  33. Edwards BS, Bologa C, Young SM, Balakin KV, Prossnitz ER, Savchuck NP, Sklar LA, Oprea TI (2005) Integration of virtual screening with high-throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists. Mol Pharmacol 68(5):1301–1310. doi: 10.1124/mol.105.014068 PubMedGoogle Scholar
  34. Engel S, Skoumbourdis AP, Childress J, Neumann S, Deschamps JR, Thomas CJ, Colson AO, Costanzi S, Gershengorn MC (2008) A virtual screen for diverse ligands: discovery of selective G protein-coupled receptor antagonists. J Am Chem Soc 130(15):5115–5123. doi: 10.1021/ja077620l PubMedGoogle Scholar
  35. Evers A, Klabunde T (2005) Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J Med Chem 48(4):1088–1097. doi: 10.1021/jm0491804 PubMedGoogle Scholar
  36. Evers A, Klebe G (2004) Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J Med Chem 47(22):5381–5392. doi: 10.1021/jm0311487 PubMedGoogle Scholar
  37. Evers A, Hessler G, Matter H, Klabunde T (2005) Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J Med Chem 48(17):5448–5465. doi: 10.1021/jm050090o PubMedGoogle Scholar
  38. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107. doi: 10.1093/nar/gkr777 PubMedGoogle Scholar
  39. Gloriam DE, Wellendorph P, Johansen LD, Thomsen AR, Phonekeo K, Pedersen DS, Brauner-Osborne H (2011) Chemogenomic discovery of allosteric antagonists at the GPRC6A receptor. Chem Biol 18(11):1489–1498. doi: 10.1016/j.chembiol.2011.09.012 PubMedGoogle Scholar
  40. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485(7398):400–404. doi: 10.1038/nature11111 PubMedGoogle Scholar
  41. Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551. doi: 10.1038/nature10753 PubMedGoogle Scholar
  42. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16(6):897–905. doi: 10.1016/j.str.2008.05.001 PubMedGoogle Scholar
  43. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335(6070):851–855. doi: 10.1126/science.1215904 PubMedGoogle Scholar
  44. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431. doi: 10.1016/S1359-6446(04)03069-7 PubMedGoogle Scholar
  45. Istyastono EP (2012) Computational studies of histamine H4 receptor-ligand interactions. VU University Amsterdam, Amsterdam. ISBN 978-90-8570-994-7Google Scholar
  46. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217. doi: 10.1126/science.1164772 PubMedGoogle Scholar
  47. Jaakola VP, Lane JR, Lin JY, Katritch V, Ijzerman AP, Stevens RC (2010) Ligand binding and subtype selectivity of the human A(2A) adenosine receptor: identification and characterization of essential amino acid residues. J Biol Chem 285(17):13032–13044. doi: 10.1074/jbc.M109.096974 PubMedGoogle Scholar
  48. Katritch V, Abagyan R (2011) GPCR agonist binding revealed by modeling and crystallography. Trends Pharmacol Sci 32(11):637–643. doi: 10.1016/ PubMedGoogle Scholar
  49. Katritch V, Rueda M, Lam PC, Yeager M, Abagyan R (2010a) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins 78(1):197–211. doi: 10.1002/prot.22507 PubMedGoogle Scholar
  50. Katritch V, Jaakola VP, Lane JR, Lin J, Ijzerman AP, Yeager M, Kufareva I, Stevens RC, Abagyan R (2010b) Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. J Med Chem 53(4):1799–1809. doi: 10.1021/jm901647p PubMedGoogle Scholar
  51. Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33(1):17–27. doi: 10.1016/ PubMedGoogle Scholar
  52. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the g protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi: 10.1146/annurev-pharmtox-032112-135923 PubMedGoogle Scholar
  53. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2):197–206. doi: 10.1038/nbt1284 PubMedGoogle Scholar
  54. Kellenberger E, Springael JY, Parmentier M, Hachet-Haas M, Galzi JL, Rognan D (2007) Identification of nonpeptide CCR5 receptor agonists by structure-based virtual screening. J Med Chem 50(6):1294–1303. doi: 10.1021/jm061389p PubMedGoogle Scholar
  55. Kim J, Wess J, van Rhee AM, Schoneberg T, Jacobson KA (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J Biol Chem 270(23):13987–13997. doi: 10.1074/jbc.270.23.13987 Google Scholar
  56. Kim J, Yip ML, Shen X, Li H, Hsin LY, Labarge S, Heinrich EL, Lee W, Lu J, Vaidehi N (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS One 7(2):e31004. doi: 10.1371/journal.pone.0031004 PubMedGoogle Scholar
  57. Kiss R, Kiss B, Konczol A, Szalai F, Jelinek I, Laszlo V, Noszal B, Falus A, Keseru GM (2008) Discovery of novel human histamine H4 receptor ligands by large-scale structure-based virtual screening. J Med Chem 51(11):3145–3153. doi: 10.1021/jm7014777 PubMedGoogle Scholar
  58. Kiss GN, Fells JI, Gupte R, Lee SC, Liu J, Nusser N, Lim KG, Ray RM, Lin FT, Parrill AL, Sumegi B, Miller DD, Tigyi G (2012) Virtual screening for LPA2-specific agonists identifies a nonlipid compound with antiapoptotic actions. Mol Pharmacol 82(6):1162–1173. doi: 10.1124/mol.112.079699 PubMedGoogle Scholar
  59. Klabunde T, Giegerich C, Evers A (2009) Sequence-derived three-dimensional pharmacophore models for G-protein-coupled receptors and their application in virtual screening. J Med Chem 52(9):2923–2932. doi: 10.1021/jm9001346 PubMedGoogle Scholar
  60. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39(Database issue):D1035–D1041. doi: 10.1093/nar/gkq1126 PubMedGoogle Scholar
  61. Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of beta2-adrenergic receptor ligands. Proc Natl Acad Sci U S A 106(16):6843–6848. doi: 10.1073/pnas.0812657106 PubMedGoogle Scholar
  62. Kolb P, Phan K, Gao ZG, Marko AC, Sali A, Jacobson KA (2012) Limits of ligand selectivity from docking to models: in silico screening for A(1) adenosine receptor antagonists. PLoS One 7(11):e49910. doi: 10.1371/journal.pone.0049910 PubMedGoogle Scholar
  63. Kooistra AJ, Roumen L, Leurs R, de Esch IJP, de Graaf C (2013) From heptahelical bundle to hits from the Haystack: structure-based virtual screening for GPCR ligands. Methods Enzymol 522:279–336. doi: 10.1016/B978-0-12-407865-9.00015-7 PubMedGoogle Scholar
  64. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556. doi: 10.1038/nature10753 PubMedGoogle Scholar
  65. Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R (2011) Participants, G.D.: status of GPCR modeling and docking as reflected by community-wide GPCR dock 2010 assessment. Structure 19(8):1108–1126. doi: 10.1016/j.str.2011.05.012
  66. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357. doi: 10.1038/nrd2518 PubMedGoogle Scholar
  67. Langmead CJ, Andrews SP, Congreve M, Errey JC, Hurrell E, Marshall FH, Mason JS, Richardson CM, Robertson N, Zhukov A, Weir M (2012) Identification of novel adenosine A2A receptor antagonists by virtual screening. J Med Chem 55(5):1904–1909. doi: 10.1021/jm201455y PubMedGoogle Scholar
  68. Leach AR, Hann MM (2011) Molecular complexity and fragment-based drug discovery: ten years on. Curr Opin Chem Biol 15(4):489–496. doi: 10.1016/j.cbpa.2011.05.008 PubMedGoogle Scholar
  69. Lin X, Huang XP, Chen G, Whaley R, Peng S, Wang Y, Zhang G, Wang SX, Wang S, Roth BL, Huang N (2012) Life beyond kinases: structure-based discovery of sorafenib as nanomolar antagonist of 5-HT receptors. J Med Chem 55(12):5749–5759. doi: 10.1021/jm300338m PubMedGoogle Scholar
  70. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26. doi: 10.1016/S0169-409X(00)00129-0 PubMedGoogle Scholar
  71. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35(Database issue):D198–D201. doi: 10.1093/nar/gkl999 PubMedGoogle Scholar
  72. Liu Y, Zhou E, Yu K, Zhu J, Zhang Y, Xie X, Li J, Jiang H (2008) Discovery of a novel CCR5 antagonist lead compound through fragment assembly. Molecules 13(10):2426–2441. doi: 10.3390/molecules13102426 PubMedGoogle Scholar
  73. Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335(6072):1106–1110. doi: 10.1126/science.1215802 PubMedGoogle Scholar
  74. Loving K, Alberts I, Sherman W (2010) Computational approaches for fragment-based and de novo design. Curr Top Med Chem 10(1):14–32. doi: 10.2174/156802610790232305 PubMedGoogle Scholar
  75. Malherbe P, Kratochwil N, Muhlemann A, Zenner MT, Fischer C, Stahl M, Gerber PR, Jaeschke G, Porter RH (2006) Comparison of the binding pockets of two chemically unrelated allosteric antagonists of the mGlu5 receptor and identification of crucial residues involved in the inverse agonism of MPEP. J Neurochem 98(2):601–615. doi: 10.1111/j.1471-4159.2006.03886.x PubMedGoogle Scholar
  76. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326. doi: 10.1038/nature10954 PubMedGoogle Scholar
  77. Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47(1):195–207. doi: 10.1021/ci600342e PubMedGoogle Scholar
  78. Michino M, Abola E, Participants GD, Brooks CL 3rd, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR dock 2008. Nat Rev Drug Discov 8(6):455–463. doi: 10.1038/nrd2877 Google Scholar
  79. Miller LJ, Chen Q, Lam PC, Pinon DI, Sexton PM, Abagyan R, Dong M (2011) Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling. J Biol Chem 286(18):15895–15907. doi: 10.1074/jbc.M110.217901 PubMedGoogle Scholar
  80. Miller DC, Lunn G, Jones P, Sabnis Y, Davies NL, Driscoll P (2012) Investigation of the effect of molecular properties on the binding kinetics of a ligand to its biological target. MedChemComm 3:449–452. doi: 10.1021/ci200088d Google Scholar
  81. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7–S26. doi: 10.1038/sj.bjp.0707515 PubMedGoogle Scholar
  82. Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AG, Tate CG, Schertler GF (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc Natl Acad Sci U S A 108(20):8228–8232. doi: 10.1073/pnas.1100185108 PubMedGoogle Scholar
  83. Moura Barbosa AJ, Del Rio A (2012) Freely accessible databases of commercial compounds for high- throughput virtual screenings. Curr Top Med Chem 12(8):866–877. doi: 10.2174/156802612800166710 PubMedGoogle Scholar
  84. Muegge I (2003) Selection criteria for drug-like compounds. Med Res Rev 23(3):302–321. doi: 10.1002/med.10041 PubMedGoogle Scholar
  85. Mysinger MM, Weiss DR, Ziarek JJ, Gravel S, Doak AK, Karpiak J, Heveker N, Shoichet BK, Volkman BF (2012) Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proc Natl Acad Sci U S A 109(14):5517–5522. doi: 10.1073/pnas.1120431109 PubMedGoogle Scholar
  86. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of beta(2)-adrenergic receptor activation. Cell 152(3):532–542. doi: 10.1016/j.cell.2013.01.008 PubMedGoogle Scholar
  87. Olah H, Rad R, Ostopovici L, Bora A, Hadaruga N, Hadaruga D, Moldovan R, Fulias A, Mracec M, Oprea TI (2007) WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery. In: Schreiber SL, Kapoor T, Wess G (eds) Chemical biology: from small molecules to systems biology and drug design. Wiley-VCH, New York, pp 760–786. doi: 10.1002/9783527619375.ch13b
  88. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745. doi: 10.1126/science.289.5480.739 PubMedGoogle Scholar
  89. Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M (2004) Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 279(18):18990–18997. doi: 10.1074/jbc.M400724200 PubMedGoogle Scholar
  90. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387. doi: 10.1038/nature06325 PubMedGoogle Scholar
  91. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329):175–180. doi: 10.1038/nature09648 PubMedGoogle Scholar
  92. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555. doi: 10.1038/nature10361 PubMedGoogle Scholar
  93. Renault N, Laurent X, Farce A, El Bakali J, Mansouri R, Gervois P, Millet R, Desreumaux P, Furman C, Chavatte P (2012) Virtual screening of CB(2) receptor agonists from Bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features. Chem Biol Drug Des. doi: 10.1111/cbdd.12095 Google Scholar
  94. Rodriguez D, Gutierrez-de-Teran H (2013) Computational approaches for ligand discovery and design in class-A G protein-coupled receptors. Curr Pharm Des 19(12):2216–2236. doi: 10.2174/1381612811319120009 PubMedGoogle Scholar
  95. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318(5854):1266–1273. doi: 10.1126/science.1150609 PubMedGoogle Scholar
  96. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469(7329):236–240. doi: 10.1038/nature09665 PubMedGoogle Scholar
  97. Rosenkilde MM, Benned-Jensen T, Frimurer TM, Schwartz TW (2010) The minor binding pocket: a major player in 7TM receptor activation. Trends Pharmacol Sci 31(12):567–574. doi: 10.1016/ PubMedGoogle Scholar
  98. Roumen L, Sanders MP, Vroling B, de Esch IJ, de Vlieg J, Leurs R, Klomp JP, Nabuurs SB, de Graaf C (2011) In silico veritas: the pitfalls and challenges of predicting GPCR-ligand interactions. Pharmaceuticals 4(9):1196–1215. doi: 10.1021/ci200088d Google Scholar
  99. Sabio M, Jones K, Topiol S (2008) Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: identification of active compounds. Bioorg Med Chem Lett 18(20):5391–5395. doi: 10.1016/j.bmcl.2008.09.046 PubMedGoogle Scholar
  100. Salo OM, Raitio KH, Savinainen JR, Nevalainen T, Lahtela-Kakkonen M, Laitinen JT, Jarvinen T, Poso A (2005) Virtual screening of novel CB2 ligands using a comparative model of the human cannabinoid CB2 receptor. J Med Chem 48(23):7166–7171. doi: 10.1021/jm050565b PubMedGoogle Scholar
  101. Salon JA, Lodowski DT, Palczewski K (2011) The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 63(4):901–937. doi: 10.1124/pr.110.003350 PubMedGoogle Scholar
  102. Sanders MP, Verhoeven S, de Graaf C, Roumen L, Vroling B, Nabuurs SB, de Vlieg J, Klomp JP (2011) Snooker: a structure-based pharmacophore generation tool applied to class A GPCRs. J Chem Inf Model 51(9):2277–2292. doi: 10.1021/ci200088d PubMedGoogle Scholar
  103. Sanders MP, McGuire R, Roumen L, de Esch IJ, de Vlieg J, Klomp JP, de Graaf C (2012) From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling. Med Chem Comm 3(1):28–38. doi: 10.1021/ci200088d Google Scholar
  104. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70. doi: 10.1038/nature10236 PubMedGoogle Scholar
  105. Sirci F, Istyastono EP, Vischer HF, Kooistra AJ, Nijmeijer S, Kuijer M, Wijtmans M, Mannhold R, Leurs R, de Esch IJ, de Graaf C (2012) Virtual fragment screening: discovery of histamine h(3) receptor ligands using ligand-based and protein-based molecular fingerprints. J Chem Inf Model 52(12):3308–3324. doi: 10.1021/ci3004094 PubMedGoogle Scholar
  106. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wuthrich K (2012) The GPCR network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12(1):25–34. doi: 10.1038/nrd3859 PubMedGoogle Scholar
  107. Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC (2007) Identification of residues important for agonist recognition and activation in GPR40. J Biol Chem 282(40):29248–29255. doi: 10.1074/jbc.M705077200 PubMedGoogle Scholar
  108. Surgand JS, Rodrigo J, Kellenberger E, Rognan D (2006) A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62(2):509–538. doi: 10.1002/prot.20768 PubMedGoogle Scholar
  109. Tang H, Wang XS, Hsieh JH, Tropsha A (2012) Do crystal structures obviate the need for theoretical models of GPCRs for structure based virtual screening. Proteins. doi: 10.1002/prot.24035 PubMedGoogle Scholar
  110. Tautermann CS (2011) The use of G-protein coupled receptor models in lead optimization. Future Med Chem 3(6):709–721. doi: 10.4155/fmc.11.24 PubMedGoogle Scholar
  111. Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G, Roth BL, Cherezov V, Stevens RC (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485(7398):395–399. doi: 10.1038/nature11085 PubMedGoogle Scholar
  112. Tikhonova IG, Sum CS, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC (2008) Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J Med Chem 51(3):625–633. doi: 10.1021/jm7012425 PubMedGoogle Scholar
  113. Topiol S, Sabio M (2008) Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery. Bioorg Med Chem Lett 18(5):1598–1602. doi: 10.1016/j.bmcl.2008.01.063 PubMedGoogle Scholar
  114. Tosh DK, Phan K, Gao ZG, Gakh AA, Xu F, Deflorian F, Abagyan R, Stevens RC, Jacobson KA, Katritch V (2012) Optimization of adenosine 5′-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J Med Chem 55(9):4297–4308. doi: 10.1021/jm300095s PubMedGoogle Scholar
  115. Tresadern G, Bartolome JM, Macdonald GJ, Langlois X (2011) Molecular properties affecting fast dissociation from the D2 receptor. Bioorg Med Chem 19(7):2231–2241. doi: 10.1016/j.bmc.2011.02.033 PubMedGoogle Scholar
  116. Triballeau N, Van Name E, Laslier G, Cai D, Paillard G, Sorensen PW, Hoffmann R, Bertrand HO, Ngai J, Acher FC (2008) High-potency olfactory receptor agonists discovered by virtual high-throughput screening: molecular probes for receptor structure and olfactory function. Neuron 60(5):767–774. doi: 10.1016/j.neuron.2008.11.014 PubMedGoogle Scholar
  117. van der Horst E, Okuno Y, Bender A, IJzerman AP (2009) Substructure mining of GPCR ligands reveals activity-class specific functional groups in an unbiased manner. J Chem Inf Model 49(2):348–360. doi: 10.1021/ci8003896 PubMedGoogle Scholar
  118. Varady J, Wu X, Fang X, Min J, Hu Z, Levant B, Wang S (2003) Molecular modeling of the three-dimensional structure of dopamine 3 (D3) subtype receptor: discovery of novel and potent D3 ligands through a hybrid pharmacophore- and structure-based database searching approach. J Med Chem 46(21):4377–4392. doi: 10.1021/jm030085p PubMedGoogle Scholar
  119. Vohra S, Taddese B, Conner AC, Poyner DR, Hay DL, Barwell J, Reeves PJ, Upton GJ, Reynolds CA (2013) Similarity between class A and class B G-protein-coupled receptors exemplified through calcitonin gene-related peptide receptor modelling and mutagenesis studies. J R Soc Interface 10(79):20120846. doi: 10.1098/rsif.2012.0846 PubMedGoogle Scholar
  120. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132(33):11443–11445. doi: 10.1021/ja105108q PubMedGoogle Scholar
  121. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491. doi: 10.1038/nature07101 PubMedGoogle Scholar
  122. Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469(7329):241–244. doi: 10.1038/nature09746 PubMedGoogle Scholar
  123. Warne T, Edwards PC, Leslie AG, Tate CG (2012) Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20(5):841–849. doi: 10.1016/j.str.2012.03.014 PubMedGoogle Scholar
  124. White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG, Grisshammer R (2012) Structure of the agonist-bound neurotensin receptor. Nature 490(7421):508–513. doi: 10.1038/nature11558 PubMedGoogle Scholar
  125. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071. doi: 10.1126/science.1194396 PubMedGoogle Scholar
  126. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485(7398):327–332. doi: 10.1038/nature10939 PubMedGoogle Scholar
  127. Yrjola S, Kalliokoski T, Laitinen T, Poso A, Parkkari T, Nevalainen T (2013) Discovery of novel cannabinoid receptor ligands by a virtual screening approach: further development of 2,4,6-trisubstituted 1,3,5-triazines as CB2 agonists. Eur J Pharm Sci 48(1–2):9–20. doi: 10.1016/j.ejps.2012.10.020 PubMedGoogle Scholar
  128. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492(7429):387–392. doi: 10.1038/nature11701 PubMedGoogle Scholar
  129. Zhukov A, Andrews SP, Errey JC, Robertson N, Tehan B, Mason JS, Marshall FH, Weir M, Congreve M (2011) Biophysical mapping of the adenosine A2A receptor. J Med Chem 54(13):4312–4323. doi: 10.1021/jm2003798 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Albert J. Kooistra
    • 1
  • Rob Leurs
    • 1
  • Iwan J. P. de Esch
    • 1
  • Chris de Graaf
    • 1
  1. 1.Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)VU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations