Skip to main content

Structure and Dynamics of G-Protein Coupled Receptors

  • Chapter
  • First Online:
G Protein-Coupled Receptors - Modeling and Simulation

Abstract

G-protein coupled receptors (GPCRs) are seven helical transmembrane proteins that mediate cell-to-cell communication. They also form the largest superfamily of drug targets. Hence detailed studies of the three dimensional structure and dynamics are critical to understanding the functional role of GPCRs in signal transduction pathways, and for drug design. In this chapter we compare the features of the crystal structures of various biogenic amine receptors, such as β1 and β2 adrenergic receptors, dopamine D3 receptor, M2 and M3 muscarinic acetylcholine receptors. This analysis revealed that conserved residues are located facing the inside of the transmembrane domain in these GPCRs improving the efficiency of packing of these structures. The NMR structure of the chemokine receptor CXCR1 without any ligand bound, shows significant dynamics of the transmembrane domain, especially the helical kink angle on the transmembrane helix6. The activation mechanism of the β2-adrenergic receptor has been studied using multiscale computational methods. The results of these studies showed that the receptor without any ligand bound, samples conformations that resemble some of the structural characteristics of the active state of the receptor. Ligand binding stabilizes some of the conformations already sampled by the apo receptor. This was later observed in the NMR study of the dynamics of human β2-adrenergic receptor. The dynamic nature of GPCRs leads to a challenge in obtaining purified receptors for biophysical studies. Deriving thermostable mutants of GPCRs has been a successful strategy to reduce the conformational heterogeneity and stabilize the receptors. This has lead to several crystal structures of GPCRs. However, the cause of how these mutations lead to thermostability is not clear. Computational studies are beginning to shed some insight into the possible structural basis for the thermostability. Molecular Dynamics simulations studying the conformational ensemble of thermostable mutants have shown that the stability could arise from both enthalpic and entropic factors. There are regions of high stress in the wild type GPCR that gets relieved upon mutation conferring thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja S, Smith SO (2009) Multiple switches in G protein-coupled receptor activation. Trends Pharmacol Sci 30:494–502

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov AI, Mileni M, Chien EY, Hanson MA, Stevens RC (2008) Microscale fluorescent thermal stability assay for membrane proteins. Structure 16:351–359

    Article  PubMed  CAS  Google Scholar 

  • Audet M, Bouvier M (2012) Restructuring G-protein coupled receptor activation. Cell 151:14–23

    Article  PubMed  CAS  Google Scholar 

  • Balaraman GS, Bhattacharya S, Vaidehi N (2010) Structural insights into conformational stability of wild type and mutant beta1-adrenergic receptor. Biophys J 99:568–577

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros J, Weinstein J (1995) Integrated methods for modeling G-protein coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  • Bhattacharya S, Vaidehi N (2010) Computational mapping of the conformational transitions in agonist selective pathways of a G-protein coupled receptor. J Am Chem Soc 132(14):5205–5214

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Hall SE, Vaidehi N (2008a) Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. J Mol Biol 382:539–555

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Hall SE, Li H, Vaidehi N (2008b) Ligand-stabilized conformational states of human beta(2) adrenergic receptor: insight into G-protein-coupled receptor activation. Biophys J 94(6):2027–2042

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Lam AR, Li H, Balaraman G, Niesen MJ, Vaidehi N (2013) Critical analysis of the successes and failures of homology models of G protein-coupled receptors. Proteins 81:729–739. doi:10.1002/prot.24195

    Google Scholar 

  • Booth PJ, Curnow P (2009) Folding scene investigation: membrane proteins. Curr Opin Struct Biol 19(1):8–13

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU (2011) Membrane protein folding: how important are hydrogen bonds? Curr Opin Struct Biol 21:42–49

    Article  PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G-protein coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Chiu ML, Tsang C, Grihalde N, MacWilliams MP (2008) Over-expression, solubilization and purification of G-protein coupled receptors for structural biology. Comb Chem High Throughput Screen 11:439–462

    Article  PubMed  CAS  Google Scholar 

  • Colombo G, Merz KM (1999) Stability and activity of mesophilic subtilisin E and its thermophilic homolog: insights from molecular dynamics simulations. J Am Chem Soc 121:6895–6903

    Article  CAS  Google Scholar 

  • Cooke RM, Koglin M, Errey JC, Marshall FH (2013) Preparation of purified GPCRs for structural studies. Biochem Soc Trans 41(1):185–190

    Article  PubMed  CAS  Google Scholar 

  • Crozier PS, Stevens MJ, Woolf TB (2007) How a small change in retinal leads to G-protein activation: initial events suggested by molecular dynamics calculations. Proteins 66:559–574

    Article  PubMed  CAS  Google Scholar 

  • Deupi X (2012) Quantification of structural distortions in the transmembrane helices of GPCRs. Methods Mol Biol 914:219–235

    PubMed  CAS  Google Scholar 

  • Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, Marshall FH (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and xanthines XAC and caffeine. Structure 19(9):1283–1293

    Article  PubMed  Google Scholar 

  • Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S, Shaw DE (2009) Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci U S A 106:4689–4694

    Article  PubMed  CAS  Google Scholar 

  • Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein coupled receptors. Proc Natl Acad Sci U S A 108:13118–13123

    Article  PubMed  CAS  Google Scholar 

  • Filizola M, Devi LA (2013) Grand opening of structure-guided design for novel opioids. Trends Pharmacol Sci 34(1):6–12

    Article  PubMed  CAS  Google Scholar 

  • Galandrin S, Oligny-Longpré G, Bouvier M (2007) The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 2007(28):423–430

    Article  Google Scholar 

  • Galés C, Rebols RV, Hogue M, Trieu P, Brelt A, Hébert TE, Bouvier M (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2:177–184

    Article  PubMed  Google Scholar 

  • Gouldson PR, Kidley NJ, Bywater RP, Psaroudakis G, Brooks HD, Diaz C, Shire D, Reynolds CA (2004) Toward the active conformations of rhodopsin and the beta2-adrenergic receptor. Proteins 56(1):67–84

    Article  PubMed  CAS  Google Scholar 

  • Granier S, Kobilka B (2012) A new era of GPCR structural and chemical biology. Nat Chem Biol 8:670–673

    Article  PubMed  CAS  Google Scholar 

  • Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the δ-opioid receptor bound to naltrindole. Nature 485(7398):400–404

    Article  PubMed  CAS  Google Scholar 

  • Grisshammer R (2009) Purification of recombinant G-protein coupled receptors. Methods Enzymol 463:631–645

    Article  PubMed  CAS  Google Scholar 

  • Grossfield A, Pittman MC, Feller SE, Soubias O, Gawrisch K (2008) Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. J Mol Biol 381:478–486

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551

    Article  PubMed  CAS  Google Scholar 

  • Hall SE, Mao A, Nicolaidou V, Finelli M, Wise EL, Nedjai B, Kanjanapangka J, Harirchian P, Chen D, Selchau V, Ribeiro S, Schyler S, Pease JE, Horuk R, Vaidehi N (2009) Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5. Mol Pharm 75:1325–1336

    Article  CAS  Google Scholar 

  • Hamelberg D, de Oliveira CA, McCammon JA (2007) Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. J Chem Phys 127(15):155102–155110

    Article  PubMed  Google Scholar 

  • Hanson MA, Stevens RC (2009) Discovery of new GPCR biology: one receptor structure at a time. Structure 17(1):8–14

    Article  PubMed  CAS  Google Scholar 

  • Hernandez G, Jenney FE, Adams MWW, LeMaster DM (2000) Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature. Proc Natl Acad Sci U S A 97:3166–3170

    Article  PubMed  CAS  Google Scholar 

  • Hornak V, Ahuja S, Eilers M, Goncalves JA, Sheves M et al (2010) Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints. J Mol Biol 396:510–527

    Article  PubMed  CAS  Google Scholar 

  • Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem 63:243–290

    Article  PubMed  CAS  Google Scholar 

  • Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230

    Article  PubMed  CAS  Google Scholar 

  • Johnston JM, Aburi M, Provasi D, Bortolato A, Urizar E, Lambert NA, Javitch JA, Filizola M (2011) Making structural sense of dimerization interfaces of delta opioid receptor homodimers. Biochemistry 50(10):1682–1690

    Article  PubMed  CAS  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G-protein coupled receptor structures. Trends Pharmacol Sci 33:17–27

    Article  PubMed  CAS  Google Scholar 

  • Kawate T, Gouaux E (2006) Fluorescence-detection size exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3:193–203

    Article  PubMed  CAS  Google Scholar 

  • Khelashvili G, Grossfield A, Feller SE, Pitman MC, Weinstein H (2009) Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations. Proteins 76:403–417

    Article  PubMed  CAS  Google Scholar 

  • Krishna A, Menon ST, Terry TJ, Sakmar TP (2002) Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch. Biochemistry 41:8298–8309

    Article  PubMed  CAS  Google Scholar 

  • Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556

    Article  PubMed  CAS  Google Scholar 

  • Lebon G, Bennett K, Jazayeri A, Tate CG (2011a) Thermostabilization of an agonist bound conformation of the human adenosine A2A receptor. J Mol Biol 409:298–310

    Article  PubMed  CAS  Google Scholar 

  • Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011b) Agonist bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    Article  PubMed  CAS  Google Scholar 

  • Magnani F, Shibata Y, Serrano-Vega MJ, Tate CG (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc Natl Acad Sci U S A 105(31):10744–10749

    Article  PubMed  CAS  Google Scholar 

  • Mailman RB, Murthy V (2010) Ligand functional selectivity advances our understanding of drug mechanisms and drug discovery. Neuropsychopharmacology 35:345–346

    Article  PubMed  Google Scholar 

  • Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326

    Article  PubMed  CAS  Google Scholar 

  • Meinhold L, Clement D, Tehei M, Daniel R, Finney JL et al (2008) Protein dynamics and stability: the distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering. Biophys J 94:4812–4818

    Article  PubMed  CAS  Google Scholar 

  • Nedjai B, Li H, Stroke IL, Wise EL, Webb ML, Merritt JR, Henderson I, Klon AE, Cole AG, Horuk R, Vaidehi N, Pease JE (2011) Small-molecule chemokine mimetics suggest a molecular basis for the observation that CXCL10 and CXCL11 are allosteric ligands of CXCR3. Br J Pharmacol 166(3):912–923

    Article  Google Scholar 

  • Niesen M, Bhattacharya S, Vaidehi N (2011) Conformational selection upon ligand binding in G-protein coupled receptors. J Am Chem Soc 133(33):13197–13204

    Article  PubMed  CAS  Google Scholar 

  • Niesen M, Bhattacharya S, Tate CG, Grisshammer R, Vaidehi N (2013) Thermostabilization of the β1-adrenergic receptor Correlates with Increased Entropy of the Inactive State. J Phys Chem 117(24):7283–7291

    Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152(3):532–542

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, MotoshimaH, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Google Scholar 

  • Park JH, Scheerer P, Hoffman KP, Choe H-W, Ernst OP (2008) Crystal structure of the ligand-free G-protein coupled receptor opsin. Nature 454:183–187

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783

    PubMed  CAS  Google Scholar 

  • Provasi D, Artacho MC, Negri A, Mobarec JC, Filizola M (2011) Ligand induced modulation of the free energy landscape of the G-protein coupled receptors explored by adaptive biasing techniques. PLoS Comput Biol 7(10):e1002193

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2-adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  PubMed  CAS  Google Scholar 

  • Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of β-arrestin biased agonism at seven transmembrane receptors. Ann Rev Pharmacol Toxicol 52:179–197

    Article  CAS  Google Scholar 

  • Roth CB, Hanson MA, Stevens RC (2008) Stabilization of the human beta2-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. J Mol Biol 376(5):1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Saam J, Tajkhorshid E, Havashi S, Schulten K (2002) Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. Biophys J 83:3097–3112

    Article  PubMed  CAS  Google Scholar 

  • Schertler GF (2005) Structure of rhodopsin and the metarhodopsin I photointermediate. Curr Opin Struct Biol 15:408–15

    Article  PubMed  CAS  Google Scholar 

  • Serrano-Vega MJ, Tate CG (2009) Transferability of thermostabilizing mutations between beta adrenergic receptors. Mol Membr Biol 26:385–396

    Article  PubMed  CAS  Google Scholar 

  • Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent resistant form. Proc Natl Acad Sci U S A 105(3):877–882

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, White JF, Serrano-Vega MJ, Magnani F, Aloia AL, Grisshammer R, Tate CG (2009) Thermostabilization of the neurotensin receptor NTS1. J Mol Biol 2390(2):262–277

    Article  Google Scholar 

  • Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70

    Article  PubMed  CAS  Google Scholar 

  • Stadler AM, Garvey CJ, Bocahut A, Sacquin-Mora S, Digel I et al (2012) Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. J R Soc Interface 9(76):2845–2855

    Article  PubMed  CAS  Google Scholar 

  • Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372(5):1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Sterpone F, Melchionna S (2012) Thermophilic proteins: insight and perspective from in silico experiments. Chem Soc Rev 41(5):1665–1676

    Article  PubMed  CAS  Google Scholar 

  • Steyaert J, Kobilka BK (2011) Nanobody stabilization of G-protein coupled receptor conformational states. Curr Opin Struct Biol 21:567–572

    Article  PubMed  CAS  Google Scholar 

  • Swaminath G, Xiang Y, Lee TW, Steenhuis J, Parnot C, Kobilka BK (2004) Sequential binding of agonists to the beta2 adrenoceptor-kinetic evidence for intermediate conformational states. J Biol Chem 279:686–691

    Article  PubMed  CAS  Google Scholar 

  • Swaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka BK (2005) Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J Biol Chem 280:22165–22171

    Article  PubMed  CAS  Google Scholar 

  • Tate CG (2012) A crystal clear solution for determining G-protein coupled receptor structures. Trends Biochem Sci 37:343–352

    Article  PubMed  CAS  Google Scholar 

  • Tate CG, Schertler GF (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struct Biol 19:386–395

    Article  PubMed  CAS  Google Scholar 

  • Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G, Roth BL, Cherezov V, Stevens RC (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485(7398):395–399

    Article  PubMed  CAS  Google Scholar 

  • Vaidehi N (2010) Dynamics and flexibility of G-protein coupled receptor conformations and their relevance to drug design. Drug Discov Today 15:951–957

    Article  PubMed  CAS  Google Scholar 

  • Vaidehi N, Bhattacharya S (2011) Multiscale computational methods for mapping conformational ensembles of G-protein coupled receptors. Adv Protein Chem Struct Biol 85:253–280

    Article  PubMed  CAS  Google Scholar 

  • Vaidehi N, Kenakin T (2010) The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol 10:775–781

    Article  PubMed  CAS  Google Scholar 

  • Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse M (2003) Measurement of the millisecond activation switch of G protein-coupled receptors in living cells. Nat Biotechnol 21:807–812

    Article  PubMed  CAS  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, MoukhametzianovR, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491

    Google Scholar 

  • Warne T, Edwards PC, Leslie AGW, Tate CG (2012) Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20:841–849

    Article  PubMed  CAS  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  PubMed  CAS  Google Scholar 

  • White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG, Grisshammer R (2012) Structure of the agonist bound neurotensin receptor. Nature 490:508–513

    Article  PubMed  CAS  Google Scholar 

  • Wintrode PL, Zhang DQ, Vaidehi N, Arnold FH, Goddard WA (2003) Protein dynamics in a family of laboratory evolved thermophilic enzymes. J Mol Biol 327:745–757

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist bound human A2A adenosine receptor. Science 332(6027):322–327

    Article  PubMed  CAS  Google Scholar 

  • Yao X, Parnot C, Deupi X, Ratnala VRP, Swaminath G, Farrens D, Kobilka BK (2006) Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat Chem Biol 2006(2):417–422

    Article  Google Scholar 

  • Yao XJ, Ruiz G, Whorton MR, Rasmussen SG, De Vree BT, Deupi X, Sunahara RK, Kobilka B (2009) The effect of ligand efficacy on the formation and stability of a GPCR-G-protein complex. Proc Natl Acad Sci U S A 106:9501–9506

    Article  PubMed  CAS  Google Scholar 

  • Zaitseva E, Brown MF, Vogel R (2010) Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate. J Am Chem Soc 132:4815–4821

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492(7429):387–392

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the helpful discussions with Dr. Christopher Tate and Dr. Reinhard Grisshammer. We thank NIH-R01097261 for providing funding for our study on GPCR thermostable mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarajan Vaidehi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vaidehi, N., Bhattacharya, S., Larsen, A.B. (2014). Structure and Dynamics of G-Protein Coupled Receptors. In: Filizola, M. (eds) G Protein-Coupled Receptors - Modeling and Simulation. Advances in Experimental Medicine and Biology, vol 796. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7423-0_3

Download citation

Publish with us

Policies and ethics