Accelerated Aging Tests for Marine Energy Applications

Part of the Solid Mechanics and Its Applications book series (SMIA, volume 208)

Abstract

Polymer matrix fibre reinforced composites have been employed in marine applications for over 50 years, and there is considerable experience of their long term behaviour. However, the recent development of systems designed to recover ocean energy, such as tidal turbines and wave energy generators, imposes much more severe constraints on materials than traditional structures. The requirements in terms of sea water aging and fatigue resistance require specific test programmes; this presentation will describe some of these applications and the tests needed to guarantee long term behavior of composites for these structures. Some results from studies performed in this area at Ifremer over the last 5 years will be discussed.

Keywords

Wind Turbine Mooring Line Fibre Treatment Wind Turbine Blade Wave Energy Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    European Science Foundation (2010) Marine Board, Vision Document, Oct 2010Google Scholar
  2. 2.
    Bahaj AS (2011) Generating electricity from the oceans. Ren Sust Energy Reviews 15:3399–3416CrossRefGoogle Scholar
  3. 3.
    Renewables UK (2013) Wave and tidal energy in the UK, FebGoogle Scholar
  4. 4.
    Fraenkel P (2010).In: Proceedings—Fluid Machinery Group—Ocean Power Fluid Machinery Seminar, Institution of Mechanical Engineers—19th Oct 2010, LondonGoogle Scholar
  5. 5.
    Renewable Energy Focus (2010) OpenHydro tidal turbine recovered—blades missing, Dec 2010http://www.renewableenergyfocus.com
  6. 6.
    Smith CS (1990) Design of marine structures in composite materials. Elsevier Science, Publishers, LondonGoogle Scholar
  7. 7.
    Davies P, Lemoine L, (1992) Nautical applications of composite materials. Proceedings 3rd IFREMER Conference, Paris, FranceGoogle Scholar
  8. 8.
    Shenoi RA, Wellicome JF (eds) (2008) Composites in maritime structures. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Springer GS (ed) (1981) Environmental effects on composite materials, TechnomicGoogle Scholar
  10. 10.
    Martin R (ed) (2008) Aging of Composites. Woodhead Publishing, CambridgeGoogle Scholar
  11. 11.
    Weitsman YJ (1991) Moisture in composites. In: Reifsnider KL (ed) Fatigue of composites. Elsevier, Netherland, pp 385–429Google Scholar
  12. 12.
    Weitsman YJ (2012) Fluid effects in polymers and polymeric composites. Springer, New YorkGoogle Scholar
  13. 13.
    Davies P, Mazeas F, Casari P et al (2001) Sea water aging of glass reinforced composites: shear behaviour and damage modelling. J Compos Mater 35(15):1343–1372Google Scholar
  14. 14.
    Charles RJ (1958) Static fatigue of glass I. J Appl Physics 29(11):1549–1560CrossRefGoogle Scholar
  15. 15.
    Price JN, Hull D (1983) Propagation of stress corrosion cracks in aligned glass fibre composite materials. J Mat Sci 18:2798–2810CrossRefGoogle Scholar
  16. 16.
    Pritchard G, Speake SD (1988) Effects of temperature on stress-rupture times in glass/polyester laminates. Composites 19(1):29–35CrossRefGoogle Scholar
  17. 17.
    Gaurier B, Davies P, Deuff A, Germain G (2013) Flume tank characterization of marine current turbine blade behaviour under wave and current loading. Renew Energy 59:1–12CrossRefGoogle Scholar
  18. 18.
    Harris B (ed) (2003) Fatigue in composites. Woodhead Publishers, CambridgeGoogle Scholar
  19. 19.
    Echtermeyer AT, Kensche C, Bach P, Poppen M, Lilholt H, Andersen SI et al (1996) Method to predict fatigue lifetimes of GRP wind turbine blades and comparison with experiments. In: Proceedings of European union wind energy conference. Göteborg, Sweden, 20–24 May 1996Google Scholar
  20. 20.
    Nijssen RPL, vanWingerde AM, vanDelft DRV (2007) Wind turbine rotor blade materials: estimating service lives. SAMPE J 43(2):7–15Google Scholar
  21. 21.
    Selvarathinam AS, Weitsman YJ (1998) Transverse cracking and delamination in cross-ply Gr/Ep composites under dry, saturated and immersed fatigue. Int J Fract 91(2):103–116CrossRefGoogle Scholar
  22. 22.
    Selvarathinam AS, Weitsman YJ (1999) A shear-lag analysis of transverse cracking and delamination in cross-ply carbon-fibre/epoxy composites under dry, saturated and immersed fatigue conditions. Comp Sci and Technol 59(14):2115–2123CrossRefGoogle Scholar
  23. 23.
    Vauthier E, Abry JC, Bailliez T, Chateauminois A (1998) Interactions between hygrothermal ageing and fatigue damage in unidirectional glass/epoxy composites. Compos Sci Technol 58:687–692CrossRefGoogle Scholar
  24. 24.
    Pauchard V, Chateauminois A, Grosjean F, Odru P (2002) In situ analysis of delayed fibre failure within water-aged GFRP under static fatigue conditions. Int J Fatigue 24:447–454CrossRefGoogle Scholar
  25. 25.
    Kotsikos G, Evans J, Gibson A, Hale J (2000) Environmentally enhanced fatigue damage in glass fibre reinforced composites characterised by acoustic emission. Comp. Part A 31(9):969–977CrossRefGoogle Scholar
  26. 26.
    Poodts E, Minak G, Zucchelli A (2013) Impact of seawater on the quasi static and fatigue flexural properties of GFRP. Compos Struct 97:222–230CrossRefGoogle Scholar
  27. 27.
    McBagonluri F, Garcia K, Hayes M, Verghese KNE, Lesko JJ (2000) Characterization of fatigue and combined environment on durability performance of glass/vinyl ester composite for infrastructure applications. Int J Fatigue 22:53–64CrossRefGoogle Scholar
  28. 28.
    Mandell JF (1978) Fatigue behavior of fiber-resin composites. In: Pritchard G (ed) Developments in reinforced plastics 2. Applied Sciences Publisher, LondonGoogle Scholar
  29. 29.
    Neumann S, Marom G (1987) Prediction of moisture diffusion parameters in composite materials under stress. J Comp Mats 21(1):68–80CrossRefGoogle Scholar
  30. 30.
    Suri C (1995) Study of the coupling of absorption and damage phenomena in a glass-epoxy composite, PhD thesis (in French). University of Franche ComtéGoogle Scholar
  31. 31.
    Perreux D, Suri C (1997) A study of the coupling between the phenomena of water absorption and damage in glass/epoxy composite pipes. Comp Sci Tech 57(9–10):1403–1413CrossRefGoogle Scholar
  32. 32.
    Davies P, Choqueuse D (2008) Ageing of composites in marine vessels, chapter 12 in Ref. [10]Google Scholar
  33. 33.
    Choqueuse D, Davies P (2008) Ageing of composites in underwater applications, chapter 18 in Ref. [10]Google Scholar
  34. 34.
    Boisseau A (2011) Long term durability of composites for ocean energy conversion systems, PhD thesis. Available at: http://archimer.ifremer.fr/doc/00031/14247/
  35. 35.
    Boisseau A, Davies P, Thiebaud F (2012) Sea water ageing of composites for ocean energy conversion systems: influence of glass fibre type on static behaviour. Appl Compos Mater 19:459–473CrossRefGoogle Scholar
  36. 36.
    Boisseau A, Davies P, Thiebaud F et al (2013) Fatigue behavior, of glass fibre reinforced composites for ocean energy conversion systems. Appl Compos Mater 20(2):145–155CrossRefGoogle Scholar
  37. 37.
    Davies P, Germain G, Gaurier B, Boisseau A, Perreux D (2013) Evaluation of the durability of composite tidal turbine blades. Roy Soc Philos Trans A 371Google Scholar
  38. 38.
    DNV, Offshore standard on composite components, DNV-OS-C501, Oct 2010Google Scholar
  39. 39.
    Lloyd G (2012) Guideline for the certification of ocean energy converters, part 1. Ocean Current turbinesGoogle Scholar
  40. 40.
    Bordes M, Davies P, Cognard J-Y, Sohier L, Sauvant-Moynot V, Galy J (2009) Prediction of long term strength of adhesively bonded steel/epoxy joints in sea water. Int J Adhes Adhes 29(6):595–608CrossRefGoogle Scholar
  41. 41.
    Leger R, Roy A, Grandidier JC (2013) A study of the impact of humid aging on the strength of industrial adhesive joints. Int J Adhes and Adhes 44:66–77CrossRefGoogle Scholar
  42. 42.
    Blommaert C, van Paepegem et al. (2010) Large scale slamming tests on composite buoys for wave energy applications. In: Proceedings of 17th international conference on composite materials, (ICCM17). Edinburgh, 2010Google Scholar
  43. 43.
    Jean P, Wattez A, Ardoise G, Melis C, van Kessel R, Fourmon A, Barrabino E, Heemskerk J, Queau JP (2012) Standing wave tube electro active polymer wave energy converter. In: Proceedings of SPIE smart structures and materials conference, San Diego, Mar 2012Google Scholar
  44. 44.
    Weller S, Davies P, Thies P, Johanning L (2012) Durability of synthetic mooring lines for ocean energy devices. In: Proceedings of 4th international conference on ocean energy (ICOE), Dublin, Oct 2012Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Materials and Structures groupIFREMER Centre de BretagnePlouzanéFrance

Personalised recommendations