Design of Racing Yachts for Durability

  • H. Devaux
  • A. Miller
  • R. Balze
  • S. Guého
  • J. Maguet
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 208)


This chapter describes the design of racing yachts with composite materials at HDS, an SME specialized in marine design and calculation. Three case studies are presented to illustrate the company expertise. First, a study of keel flutter is described. The development of an analytical tool is discussed and validation by comparison with numerical modeling is presented. Then wave impact is discussed, a regular source of damage in fast craft, and the development of a specific test to evaluate material systems is described. Finally, adhesive bonding is discussed and a specific application to mast tracks is detailed. These three studies underline the importance of a detailed understanding of composite mechanics in developing durable marine structures.


Critical Speed Sandwich Panel Wave Impact Semi Analytical Model Honeycomb Sandwich 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mazet R (1966) Mécanique vibratoire. DunodGoogle Scholar
  2. 2.
    Bezine G (1998) La méthode des Eléments Finis en Calcul des Structures, Notes De Cours. Ecole Nationale Supérieure de Mécanique et d’AérotechniqueGoogle Scholar
  3. 3.
    Abhott IH, Von Doenhoff AE (1958) Theory of wing sections. Dover, NYGoogle Scholar
  4. 4.
    Bathe KJ et al (2011) ADINA on-line manuelsGoogle Scholar
  5. 5.
    Davies P, Bigourdan B, Choqueuse D, Lacotte N, Forest B, Development of a test to simulate wave impact on composite sandwich marine structures, In: Abrate S, Castanié B, Rajapakse Y (eds) Dynamic failure of composite and sandwich structures. Springer, BerlinGoogle Scholar
  6. 6.
    Gullberg O, Olsson K-A (1990) Design and construction of GRP sandwich ship hulls. Mar Struct 3(2):93–109CrossRefGoogle Scholar
  7. 7.
    Remen W (1992) The use of FRP sandwich. In: Davies P, Lemoine L (eds) Proceedings of nautical construction with composite materials. Ifremer editions, Paris, pp 432–439Google Scholar
  8. 8.
    Bull PH, Edgren F (2004) Compressive strength after impact of CFRP-foam core sandwich panels in marine applications. Compos B, 35(6–8) 535–541CrossRefGoogle Scholar
  9. 9.
    Herup EJ, Palazotto AN (1997) Low velocity impact damage initiation in graphite/epoxy/nomex honeycomb sandwich plates. Comp Sci Tech 57:1581–1598CrossRefGoogle Scholar
  10. 10.
    Meo M, Vignjevic R, Marengo G (2005) The response of honeycomb sandwich panels under low velocity impact loading. Int J Mech Sci 47:1301–1325CrossRefGoogle Scholar
  11. 11.
    Choqueuse D, Baizeau R, Davies P (1999) Experimental studies of impact on marine composites, Proceedings of ICCM12, ParisGoogle Scholar
  12. 12.
    Baral N, Cartié DDR, Partridge IK, Baley C, Davies P (2010) Improved impact performance of marine sandwich panels using through-thickness reinforcement: experimental results. Compos B 41(2) 117–123CrossRefGoogle Scholar
  13. 13.
    Cognard JY, Davies P, Sohier L, Creac’hcadec R (2006) A study of the non-linear behaviour of adhesively-bonded composite assemblies. Compos Struct 76:34–46CrossRefGoogle Scholar
  14. 14.
    Créac’hcadec R (2008) PhD thesis, ENSTA BretagneGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • H. Devaux
    • 1
  • A. Miller
    • 1
  • R. Balze
    • 1
  • S. Guého
    • 1
  • J. Maguet
    • 1
  1. 1.HDSBrestFrance

Personalised recommendations