Communication in the Ultraviolet: Unravelling the Secret Language of Fish

  • Ulrike E. Siebeck


Ultraviolet vision is found in animals from across the animal kingdom including some mammals but excluding primates such as humans. Working under the assumption that what is conspicuous for us should also be conspicuous for other animals; scientists have often overlooked the role of UV vision in animal ecology. Indeed, despite the discovery of UV sensitivity well over a century ago, it has only been in the last 30 years that theoreticians and behavioural scientists have begun to interpret the world through the eyes of other animals, including the role UV light plays in signalling. Here, I discuss the conditions necessary for UV communication, focussing on its use in fish. I then go on to describe progress on the role UV plays in the language of fish.


Coral Reef Mate Choice Visual Pigment Intended Receiver Ocular Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allison WT, Dann SG, Helvik JV, Bradley C, Moyer HD, Hawryshyn CW (2003) Ontogeny of ultraviolet-sensitive cones in the retina of rainbow trout (Oncorhynchus mykiss). J Comp Neurol 461:294–306PubMedGoogle Scholar
  2. Allison WT, Dann SG, Veldhoen KM, Hawryshyn CW (2006) Degeneration and regeneration of ultraviolet cone photoreceptors during development in rainbow trout. J Comp Neurol 499:702–715PubMedGoogle Scholar
  3. Archard GA, Cuthill IC, Partridge JC (2009) Light environment and mating behavior in Trinidadian guppies (Poecilia reticulata). Behav Ecol Sociobiol 64:169–182Google Scholar
  4. Arnold K, Neumeyer C (1987) Wavelengths discrimination in the turtle Pseudemys scripta elegans. Vis Res 27:1501–1511PubMedGoogle Scholar
  5. Autrum H, von Zwehl V (1964) Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z vgl Physiol 48:357–384Google Scholar
  6. Avery JA, Bowmaker JK, Djamgoz MBA, Downing JEG (1982) Ultraviolet sensitive receptors in freshwater fish. J Physiol 334:23–24Google Scholar
  7. Bagnara JT, Fernandez PJ, Fujii R (2007) On the blue coloration of vertebrates. Pigment Cell Res 20:14–26PubMedGoogle Scholar
  8. Bennett ATD (1994) Ultraviolet vision in birds: what is its function? Vis Res 34:1471–1478PubMedGoogle Scholar
  9. Bennett ATD, Cuthill IC, Norris KJ (1994) Sexual selection and the mismeasure of color. Am Nat 144:848–860Google Scholar
  10. Bennett ATD, Cuthill IC, Partridge JC, Maier EJ (1996) Ultraviolet vision and mate choice in zebra finches. Nature 380:433–435Google Scholar
  11. Boulcott PD, Walton K, Braithwaite VA (2005) The role of ultraviolet wavelengths in the mate-choice decisions of female three-spined sticklebacks. J Exp Biol 208:1453–1458PubMedGoogle Scholar
  12. Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vis Res 48:2022–2041PubMedGoogle Scholar
  13. Browman HI, Novales-Flamarique I, Hawryshyn CW (1994) Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. J Exp Biol 186:187–198Google Scholar
  14. Chen D, Collins JS, Goldsmith TH (1984) The ultraviolet receptor of bird retinas. Science 225:337–340PubMedGoogle Scholar
  15. Cheng CL, Flamarique IN, Harosi FI, Rickers-Haunerland J, Haunerland NH (2006) Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish. J Comp Neurol 495:213–235PubMedGoogle Scholar
  16. Collin SP, Pettigrew JD (1988) Retinal topography in reef teleosts, I. Some species with well-developed areae but poorly-developed streaks. Brain Behav Evol 31:269–282PubMedGoogle Scholar
  17. Cott HB (1940) Adaptive colouration in animals. Methuen, LondonGoogle Scholar
  18. Cronin TW, Marshall NJ, Quinn CA, King CA (1994) Ultraviolet photoreception in mantis shrimp. Vis Res 34:1443–1452PubMedGoogle Scholar
  19. Cummings ME, Rosenthal GG, Ryan MJ (2003) A private ultraviolet channel in visual communication. Proc R Soc Lond Ser B Biol Sci 270:897–904Google Scholar
  20. Douglas RH (1986) Photopic spectral sensitivity of a teleost fish, the roach (Rutilus rutilus), with special reference to its ultraviolet sensitivity. J Comp Physiol A 159:415–421PubMedGoogle Scholar
  21. Douglas RH, McGuigan CM (1989) The spectral transmission of freshwater teleost ocular media – an interspecific comparison and a guide to potential ultraviolet sensitivity. Vis Res 29:871–879PubMedGoogle Scholar
  22. Dunlap WC, Williams DM, Chalker BE, Banaszak AT (1989) Biochemical photoadaptation in vision: U.V.-absorbing pigments in fish eye tissues. Comp Biochem Physiol B Biochem Mol Biol 93:601–607Google Scholar
  23. Dunlap WC, Shick JM, Yamamoto Y (2000) UV protection in marine organisms. I. Sunscreens, oxidative stress and antioxidants. In: Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y (eds) Free radicals in chemistry, biology and medicine. OICA International, London, pp 200–214Google Scholar
  24. Endler JA (1990) On the measurement and classification of colour in studies of animal colour patterns. Biol J Linn Soc 41:315–352Google Scholar
  25. Flamarique IN (2013) Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc R Soc Lond Ser B Biol Sci 280:20122490Google Scholar
  26. Fleishman LJ, Loew ER, Leal M (1993) Ultraviolet vision in lizards. Nature 365:397Google Scholar
  27. Ghiradella H, Aneshansley D, Eisner T, Silberglied RE, Hinton HE (1972) Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales. Science 178:1214–1217PubMedGoogle Scholar
  28. Goda M, Fujii R (1995) Blue chromatophores in two species of callionymid fish. Zool Sci 12:811–813Google Scholar
  29. Goda M, Ohata M, Ikoma H, Fujiyoshi Y, Sugimoto M, Fujii R (2011) Integumental reddish-violet coloration owing to novel dichromatic chromatophores in the teleost fish, Pseudochromis diadema. Pigment Cell Melanoma Res 24:614–617PubMedGoogle Scholar
  30. Goldsmith TH (1980) Hummingbirds see near ultraviolet light. Science 207:786–788PubMedGoogle Scholar
  31. Govardovskii VI, Zueva LV (1974) Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vis Res 14:1317–1321PubMedGoogle Scholar
  32. Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952PubMedGoogle Scholar
  33. Harosi FI, Hashimoto Y (1983) Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 222:1021–1023PubMedGoogle Scholar
  34. Hawryshyn CW, Beauchamp R (1985) Ultraviolet photosensitivity in goldfish: an independent U.V. retinal mechanism. Vis Res 25:11–20PubMedGoogle Scholar
  35. Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2008) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742Google Scholar
  36. Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL (2009) The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol 7:e1000266PubMedGoogle Scholar
  37. Hunt DM, Wilkie SE, Bowmaker JK, Poopalasundaram S (2001) Vision in the ultraviolet. Cell Mol Life Sci 58:1583–1598PubMedGoogle Scholar
  38. Huth HH (1972) Der Sehbereich des Violettohr-Kolibris. Naturwissenschaften 59:650PubMedGoogle Scholar
  39. Jacobs GH (1992) Ultraviolet vision in vertebrates. Am Zool 32:544–554Google Scholar
  40. Jacobs GH, Deegan JF (1994) Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus): characteristics and mechanisms. Vis Res 34:1433–1441PubMedGoogle Scholar
  41. Jacobs GH, Neitz J, Deegan JF (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655–656PubMedGoogle Scholar
  42. Jerlov NG (1976) Marine optics. Elsevier Scientific, Amsterdam/New YorkGoogle Scholar
  43. Kasukawa H, Oshima N, Fujii R (1986) Control of chromatophore movements in dermal chromatic units of blue damselfish–II. The motile iridophore. Comp Biochem Physiol C 83:1–7PubMedGoogle Scholar
  44. Kelber A, Osorio D (2010) From spectral information to animal colour vision: experiments and concepts. Proc R Soc B Biol Sci 277:1617–1625Google Scholar
  45. Kelly DJ, Bothwell ML (2002) Avoidance of solar ultraviolet radiation by juvenile coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 59:474–482Google Scholar
  46. Kochendoerfer GG, Lin SW, Sakmar TP, Mathies RA (1999) How color visual pigments are tuned. Trends Biochem Sci 24:300–305PubMedGoogle Scholar
  47. Kodric-Brown A, Johnson SC (2002) Ultraviolet reflectance patterns of male guppies enhance their attractiveness to females. Anim Behav 63:391–396Google Scholar
  48. Koehler PG, Agee HR, Leppla NC, Patterson RS (1987) Spectral sensitivity and behavioural response to light quality in the German cockroach (Dictyoptera: Blatallidae). Ann Entomol Soc Am 80:820Google Scholar
  49. Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106PubMedGoogle Scholar
  50. Leclercq E, Taylor JF, Migaud H (2010) Morphological skin colour changes in teleosts. Fish Fish 11:159–193Google Scholar
  51. Leis JM, Siebeck U, Dixson DL (2011) How Nemo finds home: neuroecology of larva dispersal and population connectivity in marine, demersal fishes. Integr Comp Biol 51:826–843PubMedGoogle Scholar
  52. Loew ER, Govardovskii VI, Rohlich P, Szel A (1996) Microspectrophotometric and immunocytochemical identification of ultraviolet photoreceptors in geckos. Vis Neurosci 13:247–256PubMedGoogle Scholar
  53. Longley WH (1917) Studies upon the biological significance of animal coloration I – the colors and color changes of West Indian reef-fishes. J Exp Zool 23:533–601Google Scholar
  54. Lorenz K (1962) The function of colour in coral reef fishes. Proc R Inst G B 39:282–296Google Scholar
  55. Losey GS (2003) Crypsis and communication functions of UV-visible coloration in two coral reef damselfish, Dascyllus aruanus and D. reticulatus. Anim Behav 66:299–307Google Scholar
  56. Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943Google Scholar
  57. Losey GS, McFarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia 203:433–454Google Scholar
  58. Lubbock J (1875) Observations on bees, wasps, and ants. Part II. J Linn Soc xii:227–251Google Scholar
  59. Lubbock J (1888) Ants, bees and wasps: a record of observations on the habits of the social hymenoptera. Kegan Paul, Trench & Co, LondonGoogle Scholar
  60. Lythgoe JN (1979) The ecology of vision. Clarendon, OxfordGoogle Scholar
  61. Macias Garcia C, de Perera TB (2002) Ultraviolet-based female preferences in a viviparous fish. Behav Ecol Sociobiol 52:1–6Google Scholar
  62. Malloy KD, Holman MA, Mitchell D, Detrich HW 3rd (1997) Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton. Proc Natl Acad Sci USA 94:1258–1263PubMedGoogle Scholar
  63. Marshall NJ (2000a) Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos Trans R Soc Lond B 355:1243–1248Google Scholar
  64. Marshall NJ (2000b) The visual ecology of reef fish colours. In: Espmark Y, Amundsen T, Rosenqvist G (eds) Animal signals: adaptive significance of signalling and signal design in animal communication. Tapir Publishers, Trondheim, pp 83–120Google Scholar
  65. Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey GS (2003) Visual biology of Hawaiian coral reef fishes. II. Colors of Hawaiian coral reef fish. Copeia 203:455–466Google Scholar
  66. Marshall NJ, Vorobyev M, Siebeck UE (2006) What does a reef fish see when it sees a reef fish? Eating ‘Nemo’. In: Kapoor BG, Ladich F, Collin SP, Raschi WG (eds) Fish communication. Science Publisher, Inc, Enfield, pp 393–422Google Scholar
  67. Mäthger LM, Land MF, Siebeck UE, Marshall NJ (2003) Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus. J Exp Biol 206:3607–3613PubMedGoogle Scholar
  68. Menzel R, Steinmann E, De Souza J, Backhaus W (1988) Spectral sensitivity of photoreceptors and colour vision in the solitary bee, Osmia rufa. J Exp Biol 136:35–52Google Scholar
  69. Merker E (1932) Die Sichtbarkeit ultravioletten Lichtes. Naturwissenschaften 20:41–49Google Scholar
  70. Merker E (1937) Die physikalische Leistung des Fischauges in kurzwelligem Licht. Zoologische Jahrbücher der Abteilung für allgemeine Zoologie und Physiologie 58:330–364Google Scholar
  71. Merker E (1939) Die Physiologische Leistung des Fischauges in kurzwelligem Licht. Zoologische Jahrbücher-Abteilung für Allgemeine Zoologie und Physiologie der Tiere 59:391–428Google Scholar
  72. Modarressie R, Rick IP, Bakker TCM (2006) UV matters in shoaling decisions. Proc R Soc Lond Ser B Biol Sci 273:849–854Google Scholar
  73. Modarressie R, Rick IP, Bakker TCM (2013) Ultraviolet reflection enhances the risk of predation in a vertebrate. Curr Zool 59:151–159Google Scholar
  74. Neumeyer C (1984) On spectral sensitivity in the goldfish. Evidence for neural interactions between different “cone mechanisms”. Vis Res 24:1223–1231PubMedGoogle Scholar
  75. Palacios AG, Varela FJ (1992) Colour mixing in the pigeon (Columbia livia) II: a psychophysical determination in the middle, short and near-UV wavelength range. Vis Res 32:1947–1953PubMedGoogle Scholar
  76. Perry RJ, McNaughton PA (1991) Response properties of cones from the retina of the tiger salamander. J Physiol 433:561–587PubMedGoogle Scholar
  77. Rick IP, Bakker TCM (2008a) Color signaling in conspicuous red sticklebacks: do ultraviolet signals surpass others? BMC Evol Biol 8:189PubMedGoogle Scholar
  78. Rick IP, Bakker TCM (2008b) Males do not see only red: UV wavelengths and male territorial aggression in the three-spined stickleback (Gasterosteus aculeatus). Naturwissenschaften 95:631–638PubMedGoogle Scholar
  79. Rick IP, Bakker TCM (2008c) UV wavelengths make female three-spined sticklebacks (Gasterosteus aculeatus) more attractive for males. Behav Ecol Sociobiol 62:439–445Google Scholar
  80. Rick IP, Modarressie R, Bakker TCM (2004) Male three-spined sticklebacks reflect in ultraviolet light. Behaviour 141:1531–1541Google Scholar
  81. Rick IP, Modarressie R, Bakker TCM (2006) UV wavelengths affect female mate choice in three-spined sticklebacks. Anim Behav 71:307–313Google Scholar
  82. Rowland WJ (1994) Proximate determinants of stickleback behaviour: an evolutionary perspective. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford University Press, New York, pp 297–344Google Scholar
  83. Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811Google Scholar
  84. Shand J, Davies WL, Thomas N et al (2008) The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. J Exp Biol 211:1495–1503PubMedGoogle Scholar
  85. Siebeck UE (2004) Communication in coral reef fish: the role of ultraviolet colour patterns in damselfish territorial behaviour. Anim Behav 68:273–282Google Scholar
  86. Siebeck UE, Marshall NJ (2000) Transmission of ocular media in labrid fishes. Philos Trans R Soc Lond B Biol Sci 355:1257–1261PubMedGoogle Scholar
  87. Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish – can coral reef fish see ultraviolet light? Vis Res 41:133–149PubMedGoogle Scholar
  88. Siebeck UE, Marshall NJ (2007) Potential ultraviolet vision in pre-settlement larvae and settled reef fish – a comparison across 23 families. Vis Res 47:2337–2352PubMedGoogle Scholar
  89. Siebeck UE, Collin SP, Ghoddusi M, Marshall NJ (2003) Occlusable corneas in toadfishes: light transmission, movement and ultrastructure of pigment during light- and dark-adaptation. J Exp Biol 206:2177–2190PubMedGoogle Scholar
  90. Siebeck UE, Parker AN, Sprenger D, Mathger LM, Wallis G (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr Biol 20:407–410PubMedGoogle Scholar
  91. Silberglied RE (1979) Communication in the ultraviolet. Annu Rev Ecol Syst 10:373–398Google Scholar
  92. Sillman AJ, Govardovskii VI, Roehlich P, Southard JA, Loew ER (1997) The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning, electron microscopic and immunocytochemical study. J Comp Physiol 181:89–101Google Scholar
  93. Sinha RP, Hader DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236PubMedGoogle Scholar
  94. Smith EJ, Partridge JC, Parsons KN et al (2002) Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behav Ecol 13:11–19Google Scholar
  95. Sutherland JC, Griffin KP (1981) Absorption-spectrum of DNA for wavelengths greater than 300-nm. Radiat Res 86:399–410PubMedGoogle Scholar
  96. Sweet M, Kirkham N, Bendall M, Currey L, Bythell J, Heupel M (2012) Evidence of melanoma in wild marine fish populations. PLoS One 7:e41989PubMedGoogle Scholar
  97. Tedetti M, Sempere R (2006) Penetration of ultraviolet radiation in the marine environment: a review. Photochem Photobiol 82:389–397PubMedGoogle Scholar
  98. Tett P (1990) The photic zone. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and life in the sea. Cambridge University Press, Cambridge, pp 59–87Google Scholar
  99. von Frisch K (1953) Aus dem Leben der Bienen. Springer, Berlin/Goettingen/HeidelbergGoogle Scholar
  100. White EM, Partridge UC, Church SC (2003) Ultraviolet dermal reflexion and mate choice in the guppy, Poecilia reticulata. Anim Behav 65:693–700Google Scholar
  101. Williamson CE, Metzgar SL, Lovera PA, Moeller RE (1997) Solar ultraviolet radiation and the spawning habitat of yellow perch, Perca flavescens. Ecol Appl 7:1017–1023Google Scholar
  102. Winter Y, Lopez J, von Helversen O (2003) Ultraviolet vision in a bat. Nature 425:612–614PubMedGoogle Scholar
  103. Wucherer MF, Michiels NK (2012) A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS One 7:e37913PubMedGoogle Scholar
  104. Zamzow JP (2004) Effects of diet, ultraviolet exposure, and gender on the ultraviolet absorbance of fish mucus and ocular structures. Mar Biol 144:1057–1064Google Scholar
  105. Zamzow JP, Losey GS (2002) Ultraviolet radiation absorbance by coral reef fish mucus: photo-protection and visual communication. Environ Biol Fish 63:41–47Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.SBMS, The University of QueenslandSt LuciaAustralia

Personalised recommendations