Skip to main content

The Chemical Composition and Technological Properties of Seagrasses a Basis for Their Use (A Review)

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 47))

Abstract

Seagrasses (Zostera marina, Z. noltii, Ruppia cirrosa) and other higher marine plants (Potamogeton pectinatus, etc.) are widely distributed in the ocean, and they occupy large areas of shallow gulfs and bays of the Black Sea. The usage survey of seagrasses in agriculture, industry and pharmacology has been completed, and the results of experiments on the uses of Black Sea seagrass in the diet of livestock are described, including the chemical composition. Zostera marina contains a significant amount of organic matter and nutrients with valuable trace elements whose concentrations are higher than in most terrestrial food plants. However, its organic matter does not have a high nutritional value due to the low protein content, the imbalance of its amino-acid composition and poorly assimilated lignin. The potential for economic seagrass utilization is mainly based in aquaculture, because seagrasses are keystones of the coastal ecosystems, and many of them are protected by various conventions and agreements, and they are biological ocean “hot spots”. Seagrass aquaculture can play a role in biodiversity conservation of the native communities and populations from their extraction for commercial use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. den Hartog C (1970) The seagrasses of the World. North Holland Publ, Amsterdam

    Google Scholar 

  2. Short FT, Carruthers TJB, Dennison WC, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol 350:3–20

    Article  Google Scholar 

  3. den Hartog C, Phillips RC (2001) Common structures and properties of seagrass beds fringing the coasts of the world. In: Reise K (ed) Ecological comparisons of sedimentary shores. Springer, Berlin

    Google Scholar 

  4. Green EP, Short FT (eds) (2003) World atlas of seagrasses: present status and future conservation. University of California Press, Berkeley

    Google Scholar 

  5. Hemminga MA, Duarte CM (2000) Seagrass ecology: an introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Orth RJ et al (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  7. Costanza R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  8. Short FT et al (2011) Extinction risk assessment of the world’s seagrass species. Biol Conserv 144:1961–1971

    Article  Google Scholar 

  9. Milchakova NA (2008) Seagrasses of the southern seas of Euro-Asian: composition, distribution and functional properties (review). Main results of complex research in the Azov-Black Sea basin and World Ocean (Jubilee Issue). YugNIRO Publ, Kerch (in Russian)

    Google Scholar 

  10. Lipkin Y, Beer S, Zakai D (2003) The seagrasses of the eastern Mediterranean and the Red Sea. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkeley, California

    Google Scholar 

  11. Milchakova NA (2003) The seagrasses of the Black, Azov, Caspian and Aral Seas. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  12. Milchakova NA (2011) Marine plants of the Black Sea. An illustrated field guide. Digit Print, Sevastopol

    Google Scholar 

  13. Borum J, Duarte CM, Krause-Jensen D, Greve TM (2004) European seagrasses: an introduction to monitoring and management. The M&MS Project, Copenhagen

    Google Scholar 

  14. McRoy CP, Helfferich C (1980) Applied aspects of seagrasses. In: Phillips RC, McRoy CP (eds) Handbook of seagrass biology: an ecosystem perspective. Garland STPM Press, New York/London

    Google Scholar 

  15. Kirkman H, Kendrick GA (1997) Ecological significance and commercial harvesting of drifting and beachcast macroalgae and seagrasses in Australia: a review. J Appl Phycol 9:311–326

    Article  Google Scholar 

  16. Milchakova NA (1999) On the status of seagrass communities in the Black Sea. Aquat Bot 65:21–32

    Article  Google Scholar 

  17. de la Torre-Castro M, Rönnbäck P (2004) Links between humans and seagrasses: an example from tropical East Africa. Ocean Coast Manage 47:361–387

    Article  Google Scholar 

  18. Spurgeon J (1998) The socio-economic costs and benefits of coastal habitat rehabilitation and creation. Mar Pollut Bull 37:373–382

    Article  CAS  Google Scholar 

  19. Duarte CM, Borum J, Short FT, Walker DI (2008) Seagrass ecosystems: their global status and prospects. In: Polunin NVC (ed) Aquatic ecosystems: trends and global prospects. Cambridge University Press, Cambridge

    Google Scholar 

  20. Baden S, Gullstrom M, Lunden B, Pihl L, Rosenberg R (2002) Vanishing seagrass (Zostera marina L.) in Swedish coastal waters. Ambio 19:113–122

    Google Scholar 

  21. Marbà N et al (2002) Effectiveness of protection of seagrass (Posidonia oceanica) populations in Cabrera National Park (Spain). Environ Conserv 29:509–518

    Article  Google Scholar 

  22. Boudouresque CF, Bernard G, Pergent G, Shili A, Verlaque M (2009) Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot Mar 52:395–418

    Article  Google Scholar 

  23. Waycott M et al (2009) Accelerating loss of seagrass across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A 106:12377–12381

    Article  CAS  Google Scholar 

  24. Phillips RC (1980) Transplanting methods. In: Phillips RC, McRoy CP (eds) Handbook of seagrass biology: an ecosystem perspective. Garland STPM Press, New York

    Google Scholar 

  25. Phillips RC (1982) Seagrass meadows. In: Lewis RR (ed) Creation and restoration of coastal plant communities. CRC Press, Inc, Boca Raton

    Google Scholar 

  26. Calumpong HP, Fonseca MS (2001) Seagrass transplantation and other seagrass restoration methods. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier Science BV, Amsterdam

    Google Scholar 

  27. Paling EI, van Keulen M, Wheeler K, Phillips J, Dyhrberg R (2001) Mechanical seagrass transplantation in Western Australia. Ecol Eng 16:331–339

    Article  Google Scholar 

  28. Cambridge ML, Bastyan GR, Walker DI (2002) Recovery of Posidonia meadows in Oyster Harbour, southwestern Australia. Bull Mar Sci 71:1279–1289

    Google Scholar 

  29. Ganassin C, Gibbs PJ (2008) A review of seagrass planting as a means of habitat compensation following loss of seagrass meadow. NSW Department of Primary Industries (incorporating NSW Fisheries). www.dpi.nsw.gov.au

  30. Lewis RR, Clark P, Fehring WK, Greening HS, Johansson R, Paul RT (1998) The rehabilitation of the Tampa Bay estuary, Florida, USA: an example of successful coastal management. Mar Pollut Bull 37:468–473

    Article  CAS  Google Scholar 

  31. Kenworthy WJ, Wyllie-Echeverria S, Coles RG, Pergent G, Pergent-Martini C (2006) Seagrass conservation biology: an interdisciplinary science for protection of the seagrass biome. In: Larkum AW, Duarte CM, Orth R (eds) Seagrass biology. Springer, Dordrecht

    Google Scholar 

  32. Williams SL (2007) Introduced species in seagrass ecosystems: status and concerns. J Exp Mar Biol Ecol 350:89–110

    Article  Google Scholar 

  33. Barashkov GK (1972) Comparative biochemistry of algae. Pishzheprom, Moscow (in Russian)

    Google Scholar 

  34. Dudkin MS, Lukina GD, Areshidze IV (1975) The chemistry of seagrasses. Trudi VNIRO 124:79–84 (in Russian)

    Google Scholar 

  35. Dudkin MS, Lukina GD, Areshidze IV (1976) Chemical composition of seagrasses from the coastal zone of the Black Sea (Ukraine). Rastitelnie resorsi ХП:133–137 (in Russian)

    Google Scholar 

  36. Dudkin MS, Lukina GD, Areshidze IV (1978) Characterization of seagrass cellulose. J Chem Wood 6:48–51 (in Russian)

    Google Scholar 

  37. Dudkin MS, Lukina GD, Kitaeva AP (1981) Practice of seagrass using in animal feeding. In: Proceedings of the conference on economic problems of marine products. Odessa, pp 104–110 (in Russian)

    Google Scholar 

  38. Boyko LI, Mikulich DV, Antsupova LV (1999) Ecological-economic aspects of mariculture and trends in using red Black Sea algae. In: Ecologiya, ekonomika, market, Information Center, Оdessa (in Russian)

    Google Scholar 

  39. Boyko LI, Mikulich DV, Antsupova LV (2006) Biochemical potential of macrophytes. In: Zaitzev YP, Alexandrov BG, Minicheva GG (eds) The northwestern Black Sea: biology and ecology. Naukova dumka, Kiev (in Russian)

    Google Scholar 

  40. Mikulich DV, Boyko LI, Antsupova LV (2002) Investigation of the chemical composition Gracilaria Grev. (Rhodophyta) as a raw material for complex use. Algologiya 12:250–258 (in Russian)

    Google Scholar 

  41. FAO/WHO (1967) Expert group protein requirement nutrition meetings 7:43–51

    Google Scholar 

  42. Shumilin IS, Derzhavina GP, Artyushin AM (1986) The composition and nutritive value of forages (Soviet republics, economic regions of the RSFSR): a handbook. Agropromizdat, Moscow (in Russian)

    Google Scholar 

  43. Shalimov MO, Boyko LI, Devyatikh GМ (2001) Experience and prospects of use of iodine-containing hydrobionts in contemporary ecological conditions of processing of products. Veterinary and agricultural. Agrarniy Visnik Prichernomorya 16:170–179 (in Russian)

    Google Scholar 

  44. Pergent-Martini C et al (2005) Descriptors of Posidonia oceanica meadows: use and application. Ecol Indic 5:213–230

    Article  Google Scholar 

  45. Pergent-Martini C, Boudouresque CF, Pasqualini V, Pergent G (2006) Impact of fish farming facilities on Posidonia oceanica meadows: a review. Mar Ecol 27:310–319

    Article  Google Scholar 

  46. Coles R, McKenzie L, Campbell S (2003) The seagrasses of Eastern Australia. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  47. Cabot S (1986) Memories of Cabot’s Quilt. Yankee Magazine 118–204

    Google Scholar 

  48. Hurley LM (1990) U.S. fish and wildlife service field guide to the submerged aquatic vegetation of Chesapeake Bay. Chesapeake Bay Estuary Program, MD 21401, Annapolis

    Google Scholar 

  49. Tubbs CR (1995) The meadows in the sea. Brit Wildl 6:351–355

    Google Scholar 

  50. Bandeira SO, Gell F (2003) The seagrasses of Mozambique and Southeastern Africa. In: Green EP, Short FT (eds) World atlas of seagrass. University of California Press, Berkeley

    Google Scholar 

  51. Lee KS, Lee SY (2003) The seagrasses of the Republic of Korea. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  52. Supanwanid C, Lewmanomont K (2003) The seagrasses of Thailand. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  53. Aioi K, Nakaoka M (2003) The seagrasses of Japan. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  54. Lyamkin TN, Popov AM, Loenko YN, Artyukov AA, Yelyakov GB (1990) Research in pharmokinetics of Zosterin – the seagrass pectin. Rep Acad Sci USSR 315:232–235 (in Russian)

    Google Scholar 

  55. Shapozhnikova GI et al (1992) Inhibitive effect of marine-origin polysaccharides on the development of virus-induced Rauscher leucosis. Rep Acad Sci USSR 324:881–884 (in Russian)

    Google Scholar 

  56. Loenko YuN, Artukhov AA, Koslovskaya EP (1997) Zosterin. Dalnauka, Vladivostok (in Russian)

    Google Scholar 

  57. Ovodov YS (1998) Polysaccharides of high plants: frame and physiological activity. Bio-Org Chem 24:483–501

    CAS  Google Scholar 

  58. Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K (1989) Studies on the antitumor activity of marine algae. Nippon Suisan Gakkaishi 55:1259–1264

    Article  Google Scholar 

  59. Kolenchenko EA, Sonina LN, Khotimchenko YS (2005) A comparative evaluation of antioxidant activity of low-esterified pectin from the seagrass Zostera marina and antioxidative drugs in vitro. Biologiya morya 31:380–383 (in Russian)

    Google Scholar 

  60. Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a reassessment. Aquat Bot 1334:1–16

    Google Scholar 

  61. Shi Y, Fan H, Cui X, Pan L, Li S, Song X (2010) Overview on seagrasses and related research in China. Chin J Oceanol Limnol 28:329–339

    Article  Google Scholar 

  62. Pasqualini V, Pergent-Martini C, Clabaut P, Pergent G (1998) Mapping of Posidonia oceanica using aerial photographs and side scan sonar: application off the island of Corsica (France). Estuar Coast Shelf Sci 47:359–367

    Article  Google Scholar 

  63. Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquat Bot 63:169–196

    Article  Google Scholar 

  64. Bjork M, Short FT, McLeod E, Beer S (2008) Managing seagrasses for resilience to climate change. IUCN, Gland

    Google Scholar 

  65. Erftemeijer PLA, Lewis RR (2006) Environmental impacts of dredging on seagrasses: a review. Mar Pollut Bull 52:1553–1572

    Article  CAS  Google Scholar 

  66. Waycott M, Procaccini G, Les DH, Reusch TBH (2006) Seagrass evolution, ecology and conservation: a genetic perspective. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht

    Google Scholar 

  67. Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72

    Article  Google Scholar 

  68. Hughes AR, Williams SL, Duarte CM, Heck KL, Waycott M (2009) Associations of concern: declining seagrasses and threatened dependent species. Front Ecol Environ 7:242–246

    Article  Google Scholar 

  69. Rountos KJ, Peterson BJ, Karakassis I (2012) Indirect effects of fish cage aquaculture on shallow Posidonia oceanica seagrass patches in coastal Greek waters. Aquacult Environ Interact 2:105–115. doi:10.3354/aei00037

    Article  Google Scholar 

  70. Unsworth RKF, Cullen LC (2010) Recognising the necessity for Indo-Pacific seagrass conservation. Conserv Lett 3:63–73

    Article  Google Scholar 

  71. Short FT et al (2010) In: IUCN 2012. IUCN red list of threatened species. Version 2012.1. www.iucnredlist.org

  72. Kalugina-Guntik AA (1975) Phytobentos of the Black Sea. Naukova Dumka Publ, Kiev (in Russian)

    Google Scholar 

  73. Procaccini G, Olsen JL, Reusch TBH (2007) Contribution of genetics and genomics to seagrass biology and conservation. J Exp Mar Biol Ecol 350:234–259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the UNESCO, UNESCO Doha Office, the Permanent Secretariat to the Commission for the Protection of the Black Sea Against Pollution (Contract No:07.201/2006/455221/SUB/D2) and the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 287844 for the project “Towards COast to COast NETworks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential” (COCONET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Milchakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Milchakova, N.A., Böer, B., Boyko, L.I., Mikulich, D.V. (2014). The Chemical Composition and Technological Properties of Seagrasses a Basis for Their Use (A Review). In: Khan, M.A., Böer, B., Öztürk, M., Al Abdessalaam, T.Z., Clüsener-Godt, M., Gul, B. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7411-7_22

Download citation

Publish with us

Policies and ethics