Advertisement

Distinctive Features and Role of Sulfur-Containing Compounds in Marine Plants, Seaweeds, Seagrasses and Halophytes, from an Evolutionary Point of View

Chapter
Part of the Tasks for Vegetation Science book series (TAVS, volume 47)

Abstract

Many seaweeds, seagrasses and many halophytes, grow in the tidal zone in similar environments. Their every-day-life and their life cycle are influenced by regular flooding during high tide and exposure to the air at low tide. Therefore they are confronted with similar daily changes in the osmotic potential and need to take up nutrients from the water and/or from the sediment. In addition, coastal zones and estuaries are often contaminated with high loads of some nutrients and heavy metals. Sulfur-deficiency is a major issue for land-based agriculture, whereas seawater act as a global sulfur reservoir and sulfur does not limit growth of marine plants. Sulfur-containing compounds and proteins seem to play a pivotal in the adaptation to these environmental conditions. This review highlights the putative roles of sulfur-containing compounds in a comparative way in seaweeds, seagrasses and halophytes. Can we observe similar metabolic and proteomic adaptations in regularly flooded coastal plants? The role of sulfur-containing proteins and of sulfur-containing secondary metabolites and their responsible set of enzymes will be analyzed from an evolutionary point of view. New strategies to increase salt-tolerance in higher plants based on sulfur-containing compounds are discussed.

Keywords

Heavy Metal Green Alga Brown Alga Sulfated Polysaccharide Marine Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Glenn EP, Brown JJ (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255CrossRefGoogle Scholar
  2. 2.
    Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 188:82–97CrossRefGoogle Scholar
  3. 3.
    Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Cock JM, Sterck L, Rouzé P et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621CrossRefGoogle Scholar
  5. 5.
    Nader HB, Medeiros MGL, Paiva JF, Paiva VMP, Jerônimo SMB, Ferreira TMPC, Dietrich CP (1983) A correlation between the sulfated glycosaminoglycan concentration and degree of salinity of the “habitat” in fifteen species of the classes Crustacea, Pelecypoda and Gastropoda. Comp Biochem Physiol B Biochem Mol Biol 76:433–436CrossRefGoogle Scholar
  6. 6.
    Medeiros GF, Mendes A, Castro RAB, Baú EC, Nader HB, Dietrich CP (2000) Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparin-like compounds in invertebrates. Biochim Biophys Acta 1475:287–294CrossRefGoogle Scholar
  7. 7.
    Jiao G, Yu G, Zhang J (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223CrossRefGoogle Scholar
  8. 8.
    Aquino RS, Grativol C, Mourão PA (2011) Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS One 6:e18862. doi: 10.1371/journal.pone.0018862 CrossRefGoogle Scholar
  9. 9.
    Dantas-Santos N, Gomes DL, Costa LS, Cordeiro SL, Costa MS, Trindade ES, Franco CR, Scortecci KC, Leite EL, Rocha HA (2012) Freshwater plants synthesize sulfated polysaccharides: Heterogalactans from water hyacinth (Eichhornia crassipes). Int J Mol Sci 13:961–976CrossRefGoogle Scholar
  10. 10.
    Bickel-Sandkötter S (2001) Nutzpflanzen und ihre Inhaltsstoffe. Quelle & Meyer, WiebelsheimGoogle Scholar
  11. 11.
    Uehara T, Takeshita M, Maeda M (1992) Studies on anticoagulant-active arabinan sulfates from the green alga, Codium latum. Carbohydr Res 23:309–311CrossRefGoogle Scholar
  12. 12.
    Matsubara K, Hori K, Matsuura Y, Miyazawa K (2000) Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum. Comp Biochem Physiol B Biochem Mol Biol 125:137–143CrossRefGoogle Scholar
  13. 13.
    Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556CrossRefGoogle Scholar
  14. 14.
    Donnan FG (1924) The theory of membrane equilibria. Chem Rev 1:73–90CrossRefGoogle Scholar
  15. 15.
    Dittami SM, Gravot A, Goulitquer S, Rousvoal S, Peters AF, Bouchereau A, Boyen C, Tonon T (2012) Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). Plant J 71:366–377Google Scholar
  16. 16.
    Shaw GE (1983) Bio-controlled thermostasis involving the sulfur cycle. Clim Change 5:297–303CrossRefGoogle Scholar
  17. 17.
    Dacey JWH, Blough NV (1987) Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. Geophys Res Lett 14:1246–1249CrossRefGoogle Scholar
  18. 18.
    Dacey JWH, King GM, Lobel PS (1994) Herbivory by reef fishes and production of dimethylsulfide and acrylic acid. Mar Ecol Prog Ser 112:67–74CrossRefGoogle Scholar
  19. 19.
    Karsten U, Kuck K, Daniel C, Wiencke C, Kirst GO (1994) A method for complete determination of dimethlysulphonio-propionate (DMSP) in marine macroalgae from different geographical regions. Phycologia 33:171–176CrossRefGoogle Scholar
  20. 20.
    Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97CrossRefGoogle Scholar
  21. 21.
    Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155:1750–1751CrossRefGoogle Scholar
  22. 22.
    Gullstroem M (2006) Seagrass meadows – community ecology and habitat dynamics. Dissertation, Goteborg UniversityGoogle Scholar
  23. 23.
    Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275CrossRefGoogle Scholar
  24. 24.
    Govindasamy C, Arulpriya M, Ruban P, Francisca JL, Ilayaraja A (2011) Concentration of heavy metals in seagrasses tissue of the Palk Strait, Bay of Bengal. Environ Sci 2:145–153Google Scholar
  25. 25.
    Agoramoorthy G, Chen FA, Hsu MJ (2008) Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environ Pollut 155:320–326CrossRefGoogle Scholar
  26. 26.
    Tranchina L, Micciche S, Bartolotta A, Brai M, Mantegna RN (2005) Posidonia oceanica as a historical monitor device of lead concentration in marine environment. Environ Sci Technol 39:3006–3012CrossRefGoogle Scholar
  27. 27.
    Zhang FQ, Wang YS, Sun CC, Sun Z, Lou P, Dong JD (2012) A novel metallothionein gene from a mangrove plant Kandelia candel. Ecotoxicology 21:1633–1641CrossRefGoogle Scholar
  28. 28.
    Robinson N (1989) Algal metallothioneins: secondary metabolites and proteins. Appl Phycol 1:5–18CrossRefGoogle Scholar
  29. 29.
    Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH, Daler D (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162:1133–1140CrossRefGoogle Scholar
  30. 30.
    Kraus ML (1988) Accumulation and excretion of five heavy metals by the salt marsh cord grass Spartina alterniflora. Bull N J Acad Sci 33:39–43Google Scholar
  31. 31.
    Pedersen O, Borum J, Duarte CM, Fortes MD (1998) Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar Ecol Prog Ser 169:283–288CrossRefGoogle Scholar
  32. 32.
    Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothionines: roles in heavy metals detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  33. 33.
    Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332CrossRefGoogle Scholar
  34. 34.
    Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (l.f.) Royle. Chemosphere 30:2011–2020CrossRefGoogle Scholar
  35. 35.
    Rai UN, Tripathi RD, Gupta M, Chandra P (1995) Induction of phytochelatins under cadmium stress in water lettuce (Pistia stratiotes). J Environ Sci Health A 30:2007–2026Google Scholar
  36. 36.
    Tripathi RD, Rai UN, Gupta M, Chandra P (1996) Induction of phytochelatins in Hydrilla verticillata (l.f.) Royle under cadmium stress. Bull Environ Contam Toxicol 56:505–512CrossRefGoogle Scholar
  37. 37.
    Gupta M, Tripathi RD, Rai UN, Chandra P (1998) Role of glutathione and phytochelatin in Hydrilla verticillata (l.f.) Royle and Vallisneria spiralis L. under mercury stress. Chemosphere 37:785–800CrossRefGoogle Scholar
  38. 38.
    Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (l.f.) Royle. Environ Sci Technol 41:2930–2936CrossRefGoogle Scholar
  39. 39.
    Pawlik-Skowrońska B, Pirszel J, Brown MT (2007) Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat. Aquat Toxicol 83:190–199CrossRefGoogle Scholar
  40. 40.
    Alvarez-Legorreta T, Mendoza-Cozatl D, Moreno-Sanchez R, Gold-Bouchot G (2008) Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex König) in response to cadmium exposure. Aquat Toxicol 86:12–19CrossRefGoogle Scholar
  41. 41.
    Ferrat L, Wyllie-Echeverria S, Rex GC, Pergent-Martini C, Pergent G, Zou J, Romeo M, Pasqualini V, Fernandez C (2012) Posidonia oceanica and Zostera marina as potential biomarkers of heavy metal contamination in coastal systems. In: Voudouris K (ed) Ecological water quality-water treatment and reuse, ISBN: 978-953-51-0508-4. InTechGoogle Scholar
  42. 42.
    Worden AZ, Lee JH, Mock T et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272CrossRefGoogle Scholar
  43. 43.
    Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefGoogle Scholar
  44. 44.
    Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314CrossRefGoogle Scholar
  45. 45.
    Taji T, Sakurai T, Mochida K et al (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol 8:115CrossRefGoogle Scholar
  46. 46.
    He Z, Li J, Zhang H, Ma M (2005) Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Sci 168:309–318CrossRefGoogle Scholar
  47. 47.
    Theologis A, Ecker JR, Palm CJ et al (2000) Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408:816–820CrossRefGoogle Scholar
  48. 48.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  49. 49.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  50. 50.
    Schwartz RM, Dayhoff MO (1978) Matrices for detecting distant relationships. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington, DCGoogle Scholar
  51. 51.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 10:2731–2739CrossRefGoogle Scholar
  52. 52.
    Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216CrossRefGoogle Scholar
  53. 53.
    Cherian MG, Kang YJ (2006) Metallothionein and liver cell regeneration. Exp Biol Med 231:138–144Google Scholar
  54. 54.
    Blindauer CA, Schmid R (2010) Cytosolic metal handling in plants: determinants for zinc specificity in metal transporters and metallothioneins. Metallomics 2:510–529CrossRefGoogle Scholar
  55. 55.
    Blindauer AC, Leszczyszyn IO (2010) Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 27:720–741CrossRefGoogle Scholar
  56. 56.
    Clemens S, Persoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271CrossRefGoogle Scholar
  57. 57.
    Guo WL, Meetam M, Goldsbrough PB (2008) Examining the specific contribution of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706CrossRefGoogle Scholar
  58. 58.
    Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochemistry 338:553–560CrossRefGoogle Scholar
  59. 59.
    Giordani T, Natali L, Maserti BE, Taddei S, Cavallini A (2000) Characterization and expression of DNA sequences encoding putative type-II metallothionines in seagrass Posidonia oceanica. Plant Physiol 123:1571–1581CrossRefGoogle Scholar
  60. 60.
    Cozza R, Pangaro T, Maestrini P, Giordani T, Natali L, Cavallini A (2006) Isolation of putative type 2 metallothionein encoding sequences and spatial expression pattern in the seagrass Posidonia oceanica. Aquat Bot 85:317–323CrossRefGoogle Scholar
  61. 61.
    Zhou R, Zeng K, Wu W, Chen X, Yang Z, Shi S, Wu CI (2007) Population genetics of speciation in nonmodel organisms: I. Ancestral polymorphism in mangroves. Mol Biol Evol 24:2746–2754CrossRefGoogle Scholar
  62. 62.
    Huang GY, Wang YS, Ying GG (2011) Cadmium-inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorrhiza), its encoding protein shows metal-binding ability. Exp Mar Biol Ecol 405:128–132CrossRefGoogle Scholar
  63. 63.
    Usha B, Keeran NS, Harikrishnan M, Kavitha K, Parida A (2011) Characterization of a type 3 metallothionein isolated from Porteresia coarctata. Biol Plant 55:119–124CrossRefGoogle Scholar
  64. 64.
    Huang GY, Wang YS, Ying GG, Dang AC (2012) Analysis of type 2 metallothionein gene from mangrove species (Kandelia candel). Trees. doi: 10.1007/s00468-012-0727-2 Google Scholar
  65. 65.
    Takeda M, Uno Y, Kanechi M, Inagaki N (2003) Analyses of nine cDNAs for salt-inducible gene in the halophyte Sea Aster (Aster tripolium L.). Plant Biotechnol 20:317–322CrossRefGoogle Scholar
  66. 66.
    Chaturvedi AK, Mishra A, Tiwari V, Jha B (2012) Cloning and transcript analysis of type 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 499:280–287CrossRefGoogle Scholar
  67. 67.
    Inan G, Zhang Q, Li P et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737CrossRefGoogle Scholar
  68. 68.
    Carpene E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21:35–39CrossRefGoogle Scholar
  69. 69.
    Reusch TBH, Veron AS, Preuss C, Weiner J, Wissler L, Beck A, Klages S, Kube M, Reinhardt R, Bornberg-Bauer E (2008) Comparative analysis of expressed sequence tag (EST) libraries in the seagrass Zostera marina subjected to temperature stress. Mar Biotechnol 10:297–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Vietnam Academy of Science and TechnologyInstitute of OceanographyNha Trang CityVietnam
  2. 2.Institute of BotanyLeibniz University HannoverHannoverGermany

Personalised recommendations