Salt Marshes and Biodiversity

  • A. Teixeira
  • B. Duarte
  • I. Caçador
Part of the Tasks for Vegetation Science book series (TAVS, volume 47)


Estuaries and coastal lagoons around the world are wetlands of great importance and they are regularly targeted as prime conservation sites. Many include wildlife refuges and have nature reserves that were set up in areas preserved from development in order to keep valuable species and habitats, while maintaining traditions and sustained use.

Tidal wetlands are often mentioned in the literature as natural habitats with high biological productivity. The net primary production in a salt marsh is often higher than in temperate or tropical forests and this productivity is directly linked to the important role halophytes play in estuaries, in terms of the value-added.

Salt marshes may be a sink of heavy metals. The ability to phytostabilize contaminants in the rhizo-sediment is an important aspect in the self-remediative processes and biogeochemistry of this ecosystem, and will help filtering natural and anthropogenic loads of nutrients and pollutants discharged into the wetland.

There is also a provision of rare and unique habitats, which support nursery grounds for commercial fish and wildlife, including vital feeding grounds for many migratory birds. Rediscovered as a new source of amenity and leisure activities for the population living in urban areas, salt marsh halophytes and estuaries have an important role in the preservation of biodiversity.

In this paper we discuss the support of the salt marsh ecosystem to the estuarine birds, and consequently its contribution for biodiversity.


Salt Marsh Tidal Flat Migratory Bird Lower Marsh Tidal Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brown DM (ed) (1995) Mesopotamia: the mighty kings. Time-Life Books, New YorkGoogle Scholar
  2. 2.
    Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’ Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:353–360CrossRefGoogle Scholar
  3. 3.
    WieskiK GH, Craft CB, Pennings SC (2010) Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast. Estuar Coast 33:161–169CrossRefGoogle Scholar
  4. 4.
    Teal JM, Howes BL (2000) Salt marsh values: retrospection from the end of the century. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishing, DordrechtGoogle Scholar
  5. 5.
    Best M, Massey A, Prior A (2007) Developing a saltmarsh classification tool for the European water framework directive. Mar Pollut Bull 55:205–214CrossRefGoogle Scholar
  6. 6.
    Mitsch W, Gosselink J (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33CrossRefGoogle Scholar
  7. 7.
    Edwards KR, Mills KP (2005) Aboveground and belowground productivity of Spartina alterniflora (smooth cord-grass) in natural and created Louisiana salt marshes. Estuaries 28:252–265CrossRefGoogle Scholar
  8. 8.
    Caçador I, Tibério S, Cabral H (2007) Species zonation in Corroios salt marsh in the Tagus estuary (Portugal) and its dynamics in past fifty years. Hydrobiologia 587:205–211CrossRefGoogle Scholar
  9. 9.
    Sousa A, Caçador I, Lillebø A, Pardal M (2008) Heavy metal accumulation in Hallimione portulacoides: intra- and extra-cellular binding sites. Chemosphere 70:850–857CrossRefGoogle Scholar
  10. 10.
    Sousa AI, Sousa AI, Lillebø AI, Risgaard-Petersen N, Pardal MA, Caçador I (2012) Denitrification: an ecosystem service provided by salt marshes. Mar Ecol Prog Ser 448:79–92CrossRefGoogle Scholar
  11. 11.
    Valiela I, Cole ML (2002) Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5:92–102CrossRefGoogle Scholar
  12. 12.
    Seitzinger SP (1988) Denitrification in fresh and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724Google Scholar
  13. 13.
    Galloway JN (1998) The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24CrossRefGoogle Scholar
  14. 14.
    Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green A, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:152–226CrossRefGoogle Scholar
  15. 15.
    Caçador I, Mascarenhas I, Mascarenhas P (1999) Biomass of Spartina maritima, Halimione portulacoides and Arthrocnemum fruticosum in Tagus estuary salt marshes. Program Biometeorol 13:33–41Google Scholar
  16. 16.
    Jéquel N, Rouve D (1983) Marais, Vasières, Estuaires. Ouest-FranceGoogle Scholar
  17. 17.
    Duarte B, Caetano M, Almeida P, Vale C, Caçador I (2010) Accumulation and biological cycling of heavy metal in the root-sediment system of four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158:1661–1668CrossRefGoogle Scholar
  18. 18.
    McLusky DS (1971) Ecology of Estuaries. Heinemann Educational Books, LondonGoogle Scholar
  19. 19.
    Duarte B, Caçador I (2012) Particulate metal distribution in Tagus Estuary (Portugal), during a flood episode. Mar Pollut Bull 64:2109–2116CrossRefGoogle Scholar
  20. 20.
    Caçador I, Neto JM, Duarte B, Barros DV, Pinto M, Marques JC (2013) Development of an Angiosperm Quality Assessment Tool (AQuA – Tool) for ecological quality evaluation of Portuguese water bodies – a multi-metric approach. Ecol Indic 25:141–148CrossRefGoogle Scholar
  21. 21.
    Caçador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67:75–82CrossRefGoogle Scholar
  22. 22.
    Richert M, Saarnio S, Juutinen S, Silvola J, Augustin J, Merbach W (2000) Distribution of assimilated carbon in the system Phragmites australis-waterlogged peat soil after carbon-14 pulse labeling. Biol Fert Soils 32:1–7CrossRefGoogle Scholar
  23. 23.
    Ludemann H, Arth I, Wiesack W (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol 66:754–762CrossRefGoogle Scholar
  24. 24.
    Tessier A (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  25. 25.
    Duarte B, Reboreda R, Caçador I (2008) Seasonal variation of Extracellular Enzymatic Activity (EEA) and its influence on metal speciation in a polluted salt marsh. Chemosphere 73:1056–1063CrossRefGoogle Scholar
  26. 26.
    ReboredaR CI (2007) Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima. Chemosphere 69:1655–1661CrossRefGoogle Scholar
  27. 27.
    Gadd G (2001) Accumulation and transformation of metals by microorganisms. In: Rehm HJ, Reed G, Puhler A, Stadler P (eds) Biotechnology, a multi-volume comprehensive treatise: special processes. Wiley-VCH Verlag, WeinheimGoogle Scholar
  28. 28.
    Gadd G (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  29. 29.
    Tabak H, Lens P, Hullebush E, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci BioTechnol 4:115–156CrossRefGoogle Scholar
  30. 30.
    Hullebusch E, Utomo S, Zandvoort M, Lens P (2005) Comparison of three sequential extraction procedures to describe metal fractioning in anaerobic granular sludges. Talanta 65:549–558CrossRefGoogle Scholar
  31. 31.
    Caçador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritime and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49:279–290CrossRefGoogle Scholar
  32. 32.
    Delany S, Scott D, Dodman T, Stroud D (eds) (2009) An atlas of wader populations in Africa and Western Eurasia. Wetlands International, WageningenGoogle Scholar
  33. 33.
    Lévèque R (1966) Sobre Avifauna de Portugal en Invierno. Ardeola 11:101–107Google Scholar
  34. 34.
    Hafner H, Goldschmidt T, Goldschmidt T (1972) Dénombrementhivernal de la sauvagine au Portugal, du 19 au 25 janvier. Station Biologique de la Tour du Valat. Le Sambuc, FranceGoogle Scholar
  35. 35.
    Biber O, Hoffman L (1974) Dénombrement hivernal de la sauvagine au Portugal, du 15 au janvier. Cyanopica 1:25–37Google Scholar
  36. 36.
    CEMPA-Relatórios anuais das contagens de aves aquáticas, em Janeiro.
  37. 37.
    Rose L, Scott DA (1994) Waterfowl population estimates. IWRB Publication, SlimbridgeGoogle Scholar
  38. 38.
    Moreau RE (1972) The Palaearctic-African bird migration systems. Academic Press, LondonGoogle Scholar
  39. 39.
    Cramp S, Simmons KEL (eds) (1977) The birds of the Western Palearctic. Oxford University Press, OxfordGoogle Scholar
  40. 40.
    Teixeira AM (1985) Dispersão intertidal da avifauna invernante no estuário do Tejo. CEMPA-Secretaria de Estado do AmbienteGoogle Scholar
  41. 41.
    Serra Guedes R, Teixeira A (1991) O Flamingo em Portugal. In: Martin MR et al (eds) Reunion Tecnica sobre la Situacion y Problematica del Flamenco Rosa (Phoenicopterus ruber roseus) en el Mediterraneo Occidental y Africa Noroccidental. Junta de AndaluciaGoogle Scholar
  42. 42.
    Johnson A (1991) An overview of the distribution, numbers, and movements of Flamingo in the Western Mediterranean and North-West Africa. In: Martin MR et al (eds) Reunion Tecnica sobre la Situacion y Problematica del Flamenco Rosa (Phoenicopterus ruber roseus) en el Mediterraneo Occidental y Africa Noroccidental. Junta de AndaluciaGoogle Scholar
  43. 43.
    Martin MR, Ojeda SP, Martos MR, Johnson AR (1991) Reunion Tecnica sobre la Situacion y Problematica del Flamenco Rosa (Phoenicopterus ruber roseus) en el Mediterraneo Occidental y Africa Noroccidental. Junta de AndaluciaGoogle Scholar
  44. 44.
    Mayaud N (1938) La gorgebleue à mirroir en France. Alauda 10:116–136Google Scholar
  45. 45.
    Constant P, Eybert MC (1994) Gorge-bleue à miroir Luscinia svecica., in Nouvel atlas des Oiseaux nicheurs. D. Yeatman-Berthelot, Jarry G, ParisGoogle Scholar
  46. 46.
    Constant P, Eybert MC (1995) Données sur la reproduction et l’hivernage de la Gorgebleue Lus-cinia svecica namnetum. Alauda 63:29–36Google Scholar
  47. 47.
    Eybert MC, Teixeira AM, Allano L, Bonnet P, Constant P (1989) Wintering passerine communities of some European Atlantic coastal areas. In: Conservation and development: the sustainable use of wetland resources. Proceedings of the third international wetlands conference, Rennes, FranceGoogle Scholar
  48. 48.
    Hampel H, Cattrijsse A, Elliott M (2005) Feeding habits of young predatory fishes in marsh creeks situated along the salinity gradient on the Schelde estuary, Belgium and The Netherlands. Helgol Mar Res 59:151–162CrossRefGoogle Scholar
  49. 49.
    Teixeira A (2012) Avifauna. In: Caçador et. al. Estudo de investigação, caracterização e valorização ambiental da Baía do Seixal – Comunidades Biológicas. Relatório Final, Maio. IO-FCULGoogle Scholar
  50. 50.
    Prater AJ (1981) Estuary birds of Britain and Ireland. T & AD Poyser, CaltonGoogle Scholar
  51. 51.
    Teixeira A (2010) Avifauna. In: Caçador et al (eds) Estudo de investigação, caracterização e valorização ambiental da Baía do Seixal – Comunidades Biológicas – Janeiro. IO-FCULGoogle Scholar
  52. 52.
    Rose L (1995) Where to watch birds in Spain and Portugal. Hamlyn, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Nature Conservation and ForestsLisbonPortugal
  2. 2.Centre of Oceanography of the Faculty of SciencesUniversity of Lisbon (CO)LisbonPortugal

Personalised recommendations