Advertisement

Acacia longifolia

  • T. K. Lim
Chapter

Scientific Name

Acacia longifolia(Andrews) Willd.

Synonyms

Acacia longifolia (Andrews) Willd. var. typica Benth., Mimosa longifolia Andrews, Mimosa macrostachya Poir., Phyllodoce longifolia (Andrews) Link. Racosperma longifolium (Andrews) C. Mart

Family

Fabaceae, also placed in Mimosaceae

Common/English Names

Acacia Trinervis, Aroma Doble, Golden Wattle, Coast Wattle, Sallow Wattle and Sydney Golden Wattle Golden Wattle, Long-Leaved Wattle, Sallow Wattle, Sydney Golden Wattle

Vernacular Names

None recorded

Origin/Distribution

The species is indigenous to native to south-eastern Australia, from the extreme southeast of Queensland, eastern New South Wales, eastern and southern Victoria. It is now widely cultivated in subtropical areas globally.

Agroecology

In its native range, it is found in heath and sclerophyll forest and on coastal headlands, sand dunes, riparian habitats and adjacent alluvial flats up to 150 m.

Edible Plant Parts and Uses

Flowers are edible, cooked or eaten in...

Keywords

Pupil Diameter Chenodeoxycholic Acid Ethyl Acetate Fraction Steryl Ester Allelopathic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Selected References

  1. Cherikoff V (2011) Wattleseed – a new flavour for an old seed. Australian Functional Ingredients Pty Limited, Kingsgrove NSW, Australia. http://www.cherikoff.net/index.php?id=130
  2. Cribb AB, Cribb JW (1976) Wild food in Australia. Fontana/Collins, Sydney, 240 ppGoogle Scholar
  3. da Silvia VC, Keber VA (2003) Análise dos flavonoides da Acacia longifolia (Andr.) Willd. Leguminosae-Mimosoideae. Visão Acadêmica 4(1):58 (Abstract) (in Portuguese)Google Scholar
  4. Freire CS, Coelho DS, Santos NM, Silvestre AJ, Pascoal Neto C (2005) Identification of delta7 phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species. Lipids 40(3):317–322PubMedCrossRefGoogle Scholar
  5. Grae I (1974) Nature’s colors – dyes from plants. MacMillan Publishing Co., New YorkGoogle Scholar
  6. Hassim Z, Maronese SE, Kumar RK (1998) Injury to murine airway epithelial cells by pollen enzymes. Thorax 53(5):368–371PubMedCentralPubMedCrossRefGoogle Scholar
  7. Hegarty MP, Hegarty EE, Wills RBH (2001) Food safety of Australian plant bushfoods, RIRDC publication no 01/28. Rural Industries Research and Development Corporation, CanberraGoogle Scholar
  8. Hegnauer R (1994) Chemotaxonomie der Pflanzen. Band Xia: Leguminosae: Teil 1. Birkhauser Verlag/Springer, 529 ppGoogle Scholar
  9. Jeong SI, Kim KJ, Choi MK, Keum KS, Lee S, Ahn SH, Back SH, Song JH, Ju YS, Choi BK, Jung KY (2004) α-Spinasterol isolated from the root of Phytolacca americana and its pharmacological property on diabetic nephropathy. Planta Med 70(8):736–739PubMedCrossRefGoogle Scholar
  10. Kerber VA, Silva GAAB (1993) Flavonóides da Acacia longifolia (Andr.) Willd. – Leguminosae-Mimosoideae. Rev Bras Farm 74(1):16–18Google Scholar
  11. Kodel PG (2005) Acacia longifolia (Andrews) Willd. New South Wales Flora Online, National Herbarium NSW, Royal Botanic Garden Sydney. http://plantnet.rbgsyd.nsw.gov.au/cgi-bin/NSWfl.pl?page=nswfl&lvl=sp&name=Acacia~longifolia
  12. Murray DR, Ashcroft WJ, Seppelt RD, Lennox FG (1978) Comparative biochemical and morphological studies of Acacia sophorae (Labill.) R. Br. and A. longifolia (Andrews) Willd. Aust J Bot 26(6):755–771CrossRefGoogle Scholar
  13. Peitz C, Keber VA (2003) Estudo fitoquímico, alelopático e antimicrobiano de Acacia longifolia Andr. (Willd.). Visão Acadêmica 4(1):57, (Abstract) (in PortugueseGoogle Scholar
  14. Peitz C, Cúnico MM, Miguel OG, Miguel MD, Kerber VA (2003) Avaliação da atividade antibacteriana e triagem fitoquímica das folhas de Acacia longifolia (Andr.) Willd. (Leguminosae). Rev Bras Farmacogn 13(2):61–65 (in Portuguese)Google Scholar
  15. Repke DB (1975) The histamine amides of Acacia longifolia. Lloydia 38(2):101–105PubMedGoogle Scholar
  16. Strassman RJ, Qualls CR (1994) Dose-response study of N, N-dimethyltryptamine in humans. I. Neuroendocrine, autonomic, and cardiovascular effects. Arch Gen Psychiatry 51(2):85–97PubMedCrossRefGoogle Scholar
  17. Strassman RJ, Qualls CR, Berg LM (1996) Differential tolerance to biological and subjective effects of four closely spaced doses of N, N-dimethyltryptamine in humans. Biol Psychiatry 39(9):784–795PubMedCrossRefGoogle Scholar
  18. Uchida K, Mizuno H, Hirota K, Takeda K, Takeuchi N, Ishikawa Y (1983) Effects of spinasterol and sitosterol on plasma and liver cholesterol levels and biliary and fecal sterol and bile-acid excretions in mice. Jpn J Pharmacol 33(1):103–112PubMedCrossRefGoogle Scholar
  19. Villaseñor IM, Domingo AP (2000) Anticarcinogenicity potential of spinasterol isolated from squash flowers. Teratog Carcinog Mutagen 20(3):99–105PubMedCrossRefGoogle Scholar
  20. White EP (1944a) Isolation of β-phenethylamine from Acacia species. N Z J Sci Technol 25B(4):139–142Google Scholar
  21. White EP (1944b) Isolation of tryptamine from some Acacia species. N Z J Sci Technol 25B(4):157–162Google Scholar
  22. White EP (1951) Legumes examined for alkaloids – additions and corrections. N Z J Sci Technol 33B(1):54–60Google Scholar
  23. White EP (1957) Evaluation of further legumes, mainly Lupinus and Acacia species for alkaloids. N Z J Sci Technol 38B(7):718–725Google Scholar
  24. Widmer F, Hayes PJ, Whittaker RG, Kumar RK (2000) Substrate preference profiles of proteases released by allergenic pollens. Clin Exp Allergy 30(4):571–576PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • T. K. Lim
    • 1
  1. 1.CanberraAustralia

Personalised recommendations