Immunomodulatory Activity of Phenolic Fraction from Piper Borbonense and Cassytha Filiformis Growing in Comoros Islands

  • Said H. Soidrou
  • Dalila Bousta
  • Mohammed Lachkar
  • Said O. S. Hassane
  • Amal El Youbi-Hamsas
  • Latifa El Mansouri
  • Jamal Benjilali
  • Hanane El-Hajaji
  • Abdellah Farah
Conference paper


Cassytha filiformis L. and Piper borbonense C. DC. are used as ethnical medicine for diverse diseases in Comoros islands. This study aims to evaluate the potential immunomodulator properties ex-vivo of the phenolic fraction provided of the methanol extract of these plants by flow cytometer. The results highlighted an immunosuppressive effect on lymphocyte subpopulations for all doses administered intraperitoneally (i.p.) compared to the control group. The most immunosuppressive activity was observed at doses of 25 and 100 mg/kg b.w. respectively for Cassytha filiformis and Piper borbonense. However, an interesting immunostimulant activity was noted on monocytes for all doses and on granulocytes for doses of 50 and 100 mg/kg b.w. in treated group with Cassytha filiformis. The same result was observed for P. borbonense on granulocytes for all doses. This immunostimulant effect observed on granulocytes can suggest a possible anti-inflammatory potency of these plants and an eventual use of these plants in the treatment of inflammatory symptoms diseases.


Total Flavonoid Content Immunosuppressive Activity Lymphocyte Subpopulation Immunostimulant Effect Phytochemical Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Professor Jean-Noël LABAT for botanical identification of this plant and the Emirates Center for Wildlife Propagation (ECWP) in Missour, Morocco for the donation of animals. This work was supported by the MAP2ERA project (7PCRD).


  1. 1.
    World Health Organization (2002) WHO traditional medicine strategy 2002–2005. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Verpoorte R (1998) Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Dev Trends 3:232–238CrossRefGoogle Scholar
  3. 3.
    Verpoorte R (2000) Pharmacognosy in the new millennium: lead finding and biotechnology. J Pharm Pharmacol 52:253–262CrossRefGoogle Scholar
  4. 4.
    Cragg GM, Boyd MR, Khanna R, Kneller R, Mays TD, Mazan KD, Newman DJ, Sausville EA (1999) International collaboration in drug discovery and development: the NCI experience. Pure Appl Chem 71:1619–1633CrossRefGoogle Scholar
  5. 5.
    Davis L, Kuttan G (2000) Immunomodulatory activity of Withania somnifera. J Ethnopharmacol 71:193–200CrossRefGoogle Scholar
  6. 6.
    Bin-Hafeez B, Haque R, Parvez S, Pandey S, Sayeed I, Raisuddin S (2003) Immunomodulatory effects of fenugreek (Trigonella foenumgraecum L.) extract in mice. Int Immunopharmacol 3:257–265Google Scholar
  7. 7.
    Barnes J, Anderson LA, Gibbons S, Phillipson JD (2005) Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. J Pharm Pharmacol 57:929–954CrossRefGoogle Scholar
  8. 8.
    Cheng W, Li J, You T, Hu C (2005) Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linné. J Ethnopharmacol 101:334–337Google Scholar
  9. 9.
    Patwardhan B, Manish G (2005) Botanical immunodrugs: scope and opportunities. Drug Discov Today 10:495–502CrossRefGoogle Scholar
  10. 10.
    Ishizuka M, Kawatsu M, Yamashita T, Ueno M, Takeuchi T (1995) Low molecular weight immunomodulators produced by microorganisms. Int J Immunopharmacol 17:133–139CrossRefGoogle Scholar
  11. 11.
    Hackett CJ (2003) Innate immune activation as a broad-spectrum biodefense strategy: prospects and research challenges. J Allergy Clin Immunol 112:686–694CrossRefGoogle Scholar
  12. 12.
    Kaou AM, Mahiou-Leddet V, Hutter S, Aïnouddine S, Hassani S, Yahaya I, Azas N, Ollivier E (2008) Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol 116:74–83CrossRefGoogle Scholar
  13. 13.
    PLARM (Plantes Aromatiques et Médicinales) (1990–1997) Rapport sur le projet: inventaire et Etude des plantes médicinales et aromatiques des Etats de l’Océan Indien. Plantes médicinales des Comores, de Madagascar, des Mascareignes (Maurice et Rodrigues), et des Seychelles. Ethnobotaniques et phytochimiques, COI/UE, p 94Google Scholar
  14. 14.
    Tramil in Faujour A (2002) Contribution à l’amélioration des soins de santé primaires par une investigation scientifique de la pharmacopée traditionnelle populaire des Comores – Bilan de la phase pilote du projet. CNDRS (Centre National de Documentation et de la Recherche Scientifique), p 248Google Scholar
  15. 15.
    Abdullahi M, Mohammed G, Abdulkadir NU (2003) Medicinal and economic plants of Nupeland. Jube-Evans Books and Publications, Bida, p 140Google Scholar
  16. 16.
    Quetin-Leclercq J, Hoet S, Block S, Wautier MC, Stévigny C (2004) Studies on Cassytha filiformis from Benin: isolation, biological activities and quantification of aporphines. Proceed Biores Towards Drug Discov Dev 81–107Google Scholar
  17. 17.
    Neuwinger HD (2000) African traditional medicine. A dictionary of plants’ use and applications. Med Pharm 99:1–12Google Scholar
  18. 18.
    Babayi HM, Udeme JJ, Abalaka JA, Okogun JI, Salawu OA, Akumka DD, Adamu, Zarma SS, Adzu BB, Abdulmumuni SS, Ibrahime K, Elisha BB, Zakariys SS, Inyang US (2007) Effect of oral administration of aqueous whole extract of Cassytha filiformis on haematograms and plasma biochemical parameters in rats. J Med Toxicol 3:146–151CrossRefGoogle Scholar
  19. 19.
    Nelson SC (2008) Cassytha filiformis, Plant disease PD-42. College of Tropical Agriculture and Human Resources, HonoluluGoogle Scholar
  20. 20.
    Fortin H, Robin V, Vigor C, Le Bosse B, Lohezic-Le Devehat F, Boustie J, Amoros M (2002) In vitro antiviral activity of thirty-six plants from La Reunion Island. Fitoterapia 73:346–350CrossRefGoogle Scholar
  21. 21.
    Maiza-Benabdesselam F, Khentache S, Bougoffa K, Chibane M, Adach S, Chapleur Y, Max H, Laurain-Mattar D (2007) Antioxidant activities of alkaloid extracts of two Algerian species of Fumaria: Fumaria capreolata and Fumaria bastardii. Rec Nat Prod 1:28–35Google Scholar
  22. 22.
    Hajaji HE, Lachkar N, Alaoui K, Cherrah Y, Farah A, Ennabili A, Bali BE, Lachkar M (2011) Antioxidant activity, phytochemical screening, and total phenolic content of extracts from three genders of carob tree barks growing in Morocco. Arab J Chem 4:321–324CrossRefGoogle Scholar
  23. 23.
    Salem JH (2009) Extraction, identification, caractérisation des activités biologiques de flavonoïdes de Nitraria retusa et synthèse de derivés acyles de ces molecules par voie enzymatique. Thèse de doctorat, Institut National Polytechnique de Lorraine, Université de Nancy, FranceGoogle Scholar
  24. 24.
    Tsai TH, Wang GJ, Lin LC (2008) Vasorelaxing alkaloids and flavonoids from Cassytha filiformis. J Nat Prod 71:289–291CrossRefGoogle Scholar
  25. 25.
    Chang FR, Chao YC, Teng CM, Wu YC (1998) Chemical constituents from Cassytha filiformis II. J Nat Prod 61:863–866CrossRefGoogle Scholar
  26. 26.
    Atluru S, Atluru D (1991) Evidence that genistein, a protein-tyrosine kinase inhibitor, inhibits CD28 monoclonal-antibody-stimulated human T cell proliferation. Transplantation 51:448–450CrossRefGoogle Scholar
  27. 27.
    Huang HC, Hsieh LM, Chen HW, Lin YS, Chen JS (1994) Effects of baicalein and esculetinon transduction signals and growth factors expression in T-lymphoid leukemia cells. Eur J Pharmacol 268:73–78CrossRefGoogle Scholar
  28. 28.
    Li SY, Teh BS, Seow WK, Liu YL, Thong YH (1991) In vitro immunopharmacological profile of the plant flavonoid baohuoside-1. Int J Immunopharmacol 13:129–134CrossRefGoogle Scholar
  29. 29.
    Pandey R, Maurya R, Singh G, Sathiamoorthy B, Naika S (2005) Immunosuppressive properties of flavonoids isolated from Boerhaavia diffusa Linn. Int J Immunopharmacol 5:541–553CrossRefGoogle Scholar
  30. 30.
    Chang SL, Chiang YM, Chang CLT, Yeh HH, Shyur LF, Kuo YH, Wu TK, Yan WC (2007) Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-γ expression. J Ethnopharmacol 112:232–236CrossRefGoogle Scholar
  31. 31.
    Chaubal R, Deshpande VH, Deshpande NR (2005) Methyl gallate, the medicinally important compound: a review. Electron J Environ Agric Food Chem 4:956–962Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Said H. Soidrou
    • 1
  • Dalila Bousta
    • 1
  • Mohammed Lachkar
    • 2
  • Said O. S. Hassane
    • 3
  • Amal El Youbi-Hamsas
    • 1
  • Latifa El Mansouri
    • 1
  • Jamal Benjilali
    • 1
  • Hanane El-Hajaji
    • 2
  • Abdellah Farah
    • 1
  1. 1.National Institute of Medicinal and Aromatic Plants, Taounate, PAMSNUniversity Sidi Mohamed Ben AbdellahFezMorocco
  2. 2.Faculty of Sciences Dhar el Mehraz, LIMOMUniversity Sidi Mohamed Ben AbdellahFezMorocco
  3. 3.Faculty of Sciences and TechnologyUniversity of ComorosMoroniComoros

Personalised recommendations