Advertisement

Revisiting Mortimer’s Genome Renewal Hypothesis: Heterozygosity, Homothallism, and the Potential for Adaptation in Yeast

  • Paul M. MagweneEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 781)

Abstract

In diploid organisms, the frequency and nature of sexual cycles have a major impact on genome-wide patterns of heterozygosity. Recent population genomic surveys in the budding yeast, Saccharomyces cerevisiae, have revealed surprising levels of genomic heterozygosity in what has been traditionally considered a highly inbred organism. I review evidence and hypotheses regarding the generation, maintenance, and evolutionary consequences of genomic heterozygosity in S. cerevisiae. I propose that high levels of heterozygosity in S. cerevisiae, arising from population admixture due to human domestication, coupled with selfing during rare sexual cycles, can facilitate rapid adaptation to novel environments.

Keywords

Heterozygosity Adaptation Mating systems Domestication Admixture 

Notes

Acknowledgements

I thank Helen Murphy and Cliff Zeyl for discussions and feedback, as well as two anonymous reviewers for their critical comments and suggestions on the manuscript. Ludo Muller and John McCusker kindly provided data on spore viability and heterozygosity. The work was supported in part by awards from NSF (MCB-0614959) and NIH (P50GM081883-01).

References

  1. Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Nakazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishimura A, Yoda K, Ishikawa T, Iwashita K, Fujita N, Shimoi H (2011) Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 18(6):423–434PubMedCrossRefGoogle Scholar
  2. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270PubMedCrossRefGoogle Scholar
  3. Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P, Shafer RW, Basso LC, de Amorim HV, de Oliveira AJ, Davis RW, Ronaghi M, Gharizadeh B, Stambuk BU (2012) Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genomics 287(6):485–494PubMedCrossRefGoogle Scholar
  4. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287Google Scholar
  5. Cubillos FA, Vásquez C, Faugeron S, Ganga A, Martínez C (2009) Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations. FEMS Microbiol Ecol 67(1):162–170PubMedCrossRefGoogle Scholar
  6. Cubillos FA, Billi E, Zörgö E, Parts L, Fargier P, Omholt S, Blomberg A, Warringer J, Louis EJ, Liti G (2011) Assessing the complex architecture of polygenic traits in diverged yeast populations. Mol Ecol 20(7): 1401–1413PubMedCrossRefGoogle Scholar
  7. Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG (2003) Engineering evolution to study speciation in yeasts. Nature 422(6927): 68–72PubMedCrossRefGoogle Scholar
  8. Demogines A, Wong A, Aquadro C, Alani E (2008) Incompatibilities involving yeast mismatch repair genes: a role for genetic modifiers and implications for disease penetrance and variation in genomic mutation rates. PLoS Genet 4(6):e1000103PubMedCrossRefGoogle Scholar
  9. Diezmann S, Dietrich FS (2009) Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS One 4(4):e5317PubMedCrossRefGoogle Scholar
  10. Drees BL, Thorsson V, Carter GW, Rives AW, Raymond MZ, Avila-Campillo I, Shannon P, Galitski T (2005) Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol 6(4):R38PubMedCrossRefGoogle Scholar
  11. Esberg A, Muller LAH, McCusker JH (2011) Genomic structure of and genome-wide recombination in the Saccharomyces cerevisiae S288C progenitor isolate EM93. PLoS One 6(9):e25211PubMedCrossRefGoogle Scholar
  12. Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of saccharomyces cerevisiae. PLoS Genet 1(1):66–71PubMedCrossRefGoogle Scholar
  13. Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ (2000) Chromosomal evolution in Saccharomyces. Nature 405(6785):451–454PubMedCrossRefGoogle Scholar
  14. Gagneur J, Sinha H, Perocchi F, Bourgon R, Huber W, Steinmetz LM (2009) Genome-wide allele- and strand-specific expression profiling. Mol Syst Biol 5:274PubMedCrossRefGoogle Scholar
  15. Goddard MR, Anfang N, Tang R, Gardner RC, Jun C (2010) A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environ Microbiol 12(1):63–73PubMedCrossRefGoogle Scholar
  16. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546, 563–567Google Scholar
  17. Granek JA, Murray D, Kayrkçi O, Magwene PM (2013) The genetic architecture of biofilm formation in a clinical isolate of Saccharomyces cerevisiae. Genetics 193(2):587–600PubMedCrossRefGoogle Scholar
  18. Greig D, Louis EJ, Borts RH, Travisano M (2002) Hybrid speciation in experimental populations of yeast. Science 298(5599):1773–1775PubMedCrossRefGoogle Scholar
  19. Gresham D, Ruderfer DM, Pratt SC, Schacherer J, Dunham MJ, Botstein D, Kruglyak L (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single dna microarray. Science 311(5769):1932–1936PubMedCrossRefGoogle Scholar
  20. Guijo S, Mauricio JC, Salmon JM, Ortega JM (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and ‘flor’ film ageing of dry sherry-type wines. Yeast 13(2):101–117PubMedCrossRefGoogle Scholar
  21. Haber JE (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32:561–599PubMedCrossRefGoogle Scholar
  22. Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116(3): 405–415PubMedCrossRefGoogle Scholar
  23. Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, Wang Y-M, Su C-H, Bennett RJ, Wang Y, Berman J (2013) The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494(7435):55–59PubMedCrossRefGoogle Scholar
  24. Hittinger CT (2013) Saccharomyces diversity and evolution: a budding model genus. Trends Genet 29: 309–317PubMedCrossRefGoogle Scholar
  25. Hyma KE, Fay JC (2013) Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards. Mol Ecol 22:2917–2930PubMedCrossRefGoogle Scholar
  26. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101(19):7329–7334PubMedCrossRefGoogle Scholar
  27. Kelly AC, Shewmaker FP, Kryndushkin D, Wickner RB (2012) Sex, prions, and plasmids in yeast. Proc Natl Acad Sci U S A 109(40):E2683–E2690PubMedCrossRefGoogle Scholar
  28. Kirby GC (1984) Breeding systems and heterozygosity in populations of tetrad forming fungi. Heredity 52: 35–41CrossRefGoogle Scholar
  29. Kuehne HA, Murphy HA, Francis CA, Sniegowski PD (2007) Allopatric divergence, secondary contact, and genetic isolation in wild yeast populations. Curr Biol 17(5):407–411PubMedCrossRefGoogle Scholar
  30. Levy SF, Ziv N, Siegal ML (2012) Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol 10(5):e1001325PubMedCrossRefGoogle Scholar
  31. Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108(35):14539–14544PubMedCrossRefGoogle Scholar
  32. Liti G, Schacherer J (2011) The rise of yeast population genomics. C R Biol 334(8–9):612–619PubMedCrossRefGoogle Scholar
  33. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458(7236):337–341PubMedCrossRefGoogle Scholar
  34. Magwene PM, Kayikçi Ö, Granek JA, Reininga JM, Scholl Z, Murray D (2011) Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 108(5):1987–1992PubMedCrossRefGoogle Scholar
  35. Masel J, Lyttle DN (2011) The consequences of rare sexual reproduction by means of selfing in an otherwise clonally reproducing species. Theor Popul Biol 80(4):317–322PubMedCrossRefGoogle Scholar
  36. McCusker JH (2006) Saccharomyces cerevisiae: an emerging and model pathogenic fungus. In: Heitman J, Edwards JE, Filler SG, Mitchell AP (eds) Molecular principles of fungal pathogenesis. American Society for Microbiology, Washington, DCGoogle Scholar
  37. McCusker JH, Clemons KV, Stevens DA, Davis RW (1994) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 C and form pseudohyphae. Infect Immun 62(12):5447–5455PubMedGoogle Scholar
  38. Morales L, Dujon B (2012) Evolutionary role of interspecies hybridization and genetic exchanges in yeasts. Microbiol Mol Biol Rev 76(4):721–739PubMedCrossRefGoogle Scholar
  39. Mortimer RK (2000) Evolution and variation of the yeast (Saccharomyces) genome. Genome Res 10(4):403–409PubMedCrossRefGoogle Scholar
  40. Mortimer RK, Romano P, Suzzi G, Polsinelli M (1994) Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast 10(12):1543–1552PubMedCrossRefGoogle Scholar
  41. Muller LAH, McCusker JH (2009) Microsatellite analysis of genetic diversity among clinical and nonclinical Saccharomyces cerevisiae isolates suggests heterozygote advantage in clinical environments. Mol Ecol 18(13):2779–2786PubMedCrossRefGoogle Scholar
  42. Naumov GI, Naumova ES, Sniegowski PD (1998) Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks. Can J Microbiol 44(11):1045–1050PubMedGoogle Scholar
  43. Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L (2006) Population genomic analysis of outcrossing and recombination in yeast. Nat Genet 38(9): 1077–1081PubMedCrossRefGoogle Scholar
  44. Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458(7236):342–345PubMedCrossRefGoogle Scholar
  45. Sipiczki M (2011) Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. Ann Microbiol 61:85–93.CrossRefGoogle Scholar
  46. Skelly DA, Ronald J, Connelly CF, Akey JM (2009) Population genomics of intron splicing in 38 Saccharomyces cerevisiae genome sequences. Genome Biol Evol 1:466–478PubMedCrossRefGoogle Scholar
  47. Sniegowski PD, Dombrowski PG, Fingerman E (2002) Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res 1(4):299–306PubMedGoogle Scholar
  48. Stefanini I, Dapporto L, Legras J-L, Calabretta A, Di Paola M, De Filippo C, Viola R, Capretti P, Polsinelli M, Turillazzi S, Cavalieri D (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci U S A 109(33):13398–13403PubMedCrossRefGoogle Scholar
  49. Sweeney JY, Kuehne HA, Sniegowski PD (2004) Sympatric natural Saccharomyces cerevisiae and S. paradoxus populations have different thermal growth profiles. FEMS Yeast Res 4(4–5):521–525PubMedCrossRefGoogle Scholar
  50. Tsai IJ, Bensasson D, Burt A, Koufopanou V (2008) Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc Natl Acad Sci U S A 105(12):4957–4962PubMedCrossRefGoogle Scholar
  51. Wang Q-M, Liu W-Q, Liti G, Wang S-A, Bai F-Y (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol 21(22):5404–5417PubMedCrossRefGoogle Scholar
  52. Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z, Gu Z, Bruno D, Miranda M, Nguyen M, Wilhelmy J, Komp C, Tamse R, Wang X, Jia P, Luedi P, Oefner PJ, David L, Dietrich FS, Li Y, Davis RW, Steinmetz LM (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A 104(31):12825–12830PubMedCrossRefGoogle Scholar
  53. Zheng W, Zhao H, Mancera E, Steinmetz LM, Snyder M (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature 464(7292): 1187–1191PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations