Skip to main content

Ecological Epigenetics

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 781))

Abstract

Biologists have assumed that heritable variation due to DNA sequence differences (i.e., genetic variation) allows populations of organisms to be both robust and adaptable to extreme environmental conditions. Natural selection acts on the variation among different genotypes and ultimately changes the genetic composition of the population. While there is compelling evidence about the importance of genetic polymorphisms, evidence is accumulating that epigenetic mechanisms (e.g., chromatin modifications, DNA methylation) can affect ecologically important traits, even in the absence of genetic variation. In this chapter, we review this evidence and discuss the consequences of epigenetic variation in natural populations. We begin by defining the term epigenetics, providing a brief overview of various epigenetic mechanisms, and noting the potential importance of epigenetics in the study of ecology. We continue with a review of the ecological epigenetics literature to demonstrate what is currently known about the amount and distribution of epigenetic variation in natural populations. Then, we consider the various ecological contexts in which epigenetics has proven particularly insightful and discuss the potential evolutionary consequences of epigenetic variation. Finally, we conclude with suggestions for future directions of ecological epigenetics research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ainouche ML, Baumel A, Salmon A, Yannic G (2004) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161(1):165–172

    CAS  Google Scholar 

  • Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien MA, Fukunaga K, Ricou M, Misset MT (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions 11:1159–1173

    Google Scholar 

  • Anderson TR (2006) Biology of the ubiquitous house sparrow: from genes to populations. Oxford University Press, New York

    Google Scholar 

  • Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol 19(7):1283–1295

    PubMed  CAS  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and mate fertility. Science 308:1466–1469

    PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    PubMed  CAS  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    PubMed  CAS  Google Scholar 

  • Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13(10):705–719

    PubMed  CAS  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification: heritable responses to environmental stress? Curr Opin Plant Biol 14(3):260–266

    PubMed  Google Scholar 

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Gen Genomics 268:543–552

    CAS  Google Scholar 

  • Chelaifa H, Monnier A, Ainouche ML (2010a) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174

    PubMed  CAS  Google Scholar 

  • Chelaifa H, Mahe F, Ainouche ML (2010b) Transcriptome divergence between the hexaploid salt-marsh sister species Spartina maritima and Spartina alterniflora (Poaceae). Mol Ecol 19:2050–2063

    PubMed  CAS  Google Scholar 

  • Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    PubMed  CAS  Google Scholar 

  • Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA 104(14):5942–5946

    PubMed  CAS  Google Scholar 

  • Cropley JE, Suter CM, Beckman KB, Martin DI (2010) CpG methylation of a silent controlling element in the murine Avy allele is incomplete and unresponsive to methyl donor supplementation. PLoS ONE 5(2):e9055

    PubMed  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    PubMed  CAS  Google Scholar 

  • Dahl C, Guldberg P (2003) DNA methylation analysis techniques. Biogerontology 4:233–250

    PubMed  CAS  Google Scholar 

  • Day T, Bonduriansky R (2011) A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am Nat 178:E18–E36

    PubMed  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Heal Perspect 144(4):567–572

    Google Scholar 

  • Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23(3):297–307

    PubMed  CAS  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109(32):E2183–E2191

    PubMed  CAS  Google Scholar 

  • Etter PD, Preston JL, Bassham S, Cresko WA, Johnson EA (2011) Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS ONE 6(4):e18561

    PubMed  CAS  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107(19):8689–8694

    PubMed  CAS  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    PubMed  CAS  Google Scholar 

  • Fortune PM, Schierenbeck KA, Ainouche AK, Jacquemin J, Wendel JF, Ainouche ML (2007) Evolutionary dynamics of waxy and the origin of hexaploid Spartina species (Poaceae). Mol Phylogenet Evol 43(3):1040–1055

    PubMed  CAS  Google Scholar 

  • Geoghegen JL, Spencer HG (2012) Population-epigenetic models of selection. Theor Popul Biol 81:232–242

    Google Scholar 

  • Grossniklaus U, Kelly W, Ferguson-Smith AC, Pembrey M, Lindquist S (2013) Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 14:228–235

    PubMed  CAS  Google Scholar 

  • Hallgrímsson B, Hall BK (2011) Epigenetics: linking genotype and phenotype in development and evolution. University of California Press, Berkeley

    Google Scholar 

  • Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187:867–876

    PubMed  CAS  Google Scholar 

  • Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 20:1675–1688

    PubMed  CAS  Google Scholar 

  • Herrera CM, Pozo MI, Bazaga P (2012) Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower living yeast. Mol Ecol 21(11):2602–2616

    PubMed  CAS  Google Scholar 

  • Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213(1):3–16

    PubMed  CAS  Google Scholar 

  • Ho SM, Tang WY, Belmonte de Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66(11):5624–5632

    PubMed  CAS  Google Scholar 

  • Holliday R (1994) Epigenetics: an overview. Dev Genet 15(6):453–457

    PubMed  CAS  Google Scholar 

  • Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1(2):76–80

    PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variations. J Theor Biol 139:69–83

    PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96

    PubMed  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    PubMed  Google Scholar 

  • Jablonka E, Lachmann M, Lamb MJ (1992) Evidence, mechanisms and models for the inheritance of acquired characters. J Theor Biol 158(2):245–268

    Google Scholar 

  • Jablonka E, Oborny B, Molnar I, Kisdi E, Hofbauer J, Czaran T (1995) The adaptive advantage of phenotypic memory in changing environments. Philos Trans R Soc Lond B Biol Sci 350(1332):133–141

    PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    PubMed  CAS  Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262

    PubMed  CAS  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    PubMed  Google Scholar 

  • Johnston RF, Selander RK (1973) Evolution in the house sparrow. III. Variation in size and sexual dimorphism in Europe and North and South America. Am Nat 107(955):373–390

    Google Scholar 

  • Karrenberg S, Lexer C, Rieseberg LH (2007) Reconstructing the history of selection during homoploid hybrid speciation. Am Nat 169(6):725–737

    PubMed  Google Scholar 

  • Kaslow DC, Migeon BR (1987) DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proc Natl Acad Sci 84(17):6210–6214

    PubMed  CAS  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632

    PubMed  CAS  Google Scholar 

  • Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel JF (ed) Molecular biology and evolution of the plant genome. Springer Verlag, Vienna/New York, pp 17–34

    Google Scholar 

  • Kovalchuk I (2012) Transgenerational epigenetic inheritance in animals. Front Genet 3:76

    PubMed  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319(5871):1827–1830

    PubMed  CAS  Google Scholar 

  • Lachmann M, Jablonka E (1996) The inheritance of phenotypes: an adaptation to fluctuating environments. J Theor Biol 181:1–9

    PubMed  CAS  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266

    PubMed  CAS  Google Scholar 

  • Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11(3):191–203

    PubMed  CAS  Google Scholar 

  • Ledón-Rettig CC, Richards CL, Martin LB (2013) Epigenetics for behavioral ecologists. Behav Ecol 24(1):1–14

    Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366(6453):362–365

    PubMed  CAS  Google Scholar 

  • Liebl AL, Schrey AW, Richards CL, Martin LB (2013) Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr Comp Biol 53(2):351–358

    PubMed  CAS  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    PubMed  CAS  Google Scholar 

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5:e10326

    PubMed  Google Scholar 

  • Liu B (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29(3):365–379

    PubMed  CAS  Google Scholar 

  • Liu Z, Maekawa M (2003) Polymerase chain reaction-based methods of DNA methylation analysis. Anal Biochem 317(2):259–265

    PubMed  CAS  Google Scholar 

  • Martin LB (2005) A taste for novelty in invading house sparrows, Passer domesticus. Behav Ecol 16(4):702–707

    Google Scholar 

  • Martin LB, Gilliam J, Han P, Lee K, Wikelski M (2005) Corticosterone suppresses cutaneous immune function in temperate but not tropical House Sparrows, Passer domesticus. Gen Comp Endocrinol 140(2):126–135

    CAS  Google Scholar 

  • Martin LB, Liebl AL, Trotter JH, Richards CL, McCoy K, McCoy MW (2011) Integrators: physiological determinants of phenotypic plasticity. Integr Comp Biol 51:514–527

    PubMed  Google Scholar 

  • Massicotte R, Whitelaw E, Angers B (2011) DNA methylation: a source of random variation in natural populations. Epigenetics 6(4):421–427

    PubMed  CAS  Google Scholar 

  • McClelland M, Nelson M, Raschke E (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22(17):3640–3659

    PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    PubMed  CAS  Google Scholar 

  • Miklos GL, Maleszka R (2011) Epigenomic communication systems in humans and honey bees: from molecules to behavior. Horm Behav 59(3):399–406

    Google Scholar 

  • Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99(3):371–382

    PubMed  CAS  Google Scholar 

  • Morgan HD, Sutherland HE, Martin DIK, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318

    PubMed  CAS  Google Scholar 

  • Nätt D, Rubin CJ, Wright D, Johnsson M, Beltéky J, Andersson L, Jensen P (2012) Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics 13:59

    PubMed  Google Scholar 

  • Pal C (1998) Plasticity, memory and the adaptive landscape of the genotype. Proc R Soc B Biol Sci 265(1403):1319–1323

    Google Scholar 

  • Pal C, Miklos I (1999) Epigenetic inheritance, genetic assimilation and speciation. J Theor Biol 200:19–37

    PubMed  CAS  Google Scholar 

  • Palevitz BA (1999) Helical science. Scientist 13(19):31

    Google Scholar 

  • Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien M (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186(1):37–45

    PubMed  CAS  Google Scholar 

  • Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol 27:2465–2473

    PubMed  CAS  Google Scholar 

  • Pérez JE, Nirchio M, Alfonsi C, Muñoz C (2006) The biology of invasions: the genetic adaptation paradox. Biol Invasions 8(5):1115–1121

    Google Scholar 

  • Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philos Trans R Soc B 365:557–566

    CAS  Google Scholar 

  • Rakyan VK, Preis J, Morgan HD, Whitelaw E (2001) The marks, mechanisms and memory of epigenetic states in mammals. Biochem J 356:1–10

    PubMed  CAS  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    PubMed  CAS  Google Scholar 

  • Reyna-Lopez GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253(6):703–710

    PubMed  CAS  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet 7:395–401

    PubMed  CAS  Google Scholar 

  • Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol 14:204–209

    PubMed  CAS  Google Scholar 

  • Richards EJ, Elgin SCR (2002) Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108(4):489–500

    PubMed  CAS  Google Scholar 

  • Richards CL, Walls R, Bailey JP, Parameswaran R, George T, Pigliucci M (2008) Plasticity in salt tolerance traits allows for invasion of salt marshes by Japanese knotweed s.l. (Fallopia japonica and F. × bohemica, Polygonaceae). Am J Bot 95:931–942

    PubMed  Google Scholar 

  • Richards CL, Hanzawa Y, Ehrenreich IM, Katari M, Engelmann KE, Purugganan MD (2009) Perspectives on ecological and evolutionary systems biology. In: Gutierrez RA, Coruzzi GM (eds) Plant systems biology, vol 35, Annual plant reviews. Blackwell, Oxford, pp 331–351

    Google Scholar 

  • Richards CL, Bossdorf O, Verhoeven KJF (2010a) Understanding natural epigenetic variation. New Phytol 187:562–564

    PubMed  Google Scholar 

  • Richards CL, Bossdorf O, Pigliucci M (2010b) What role does heritable epigenetic variation play in phenotypic evolution? Bioscience 60:232–237

    Google Scholar 

  • Richards CL, Verhoeven KJF, Bossdorf O (2012a) Evolutionary significance of epigenetic variation. In: Wendel JF (ed) Molecular biology and evolution of the plant genome. Springer Verlag, Vienna/New York, pp 257–274

    Google Scholar 

  • Richards CL, Schrey A, Pigliucci M (2012b) Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett 15:1016–1025

    PubMed  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis Roberts RJ, Vincze T, Posfai J, Macelis D (2007) REBASE- enzymes and genes for DNA restriction and modification. Nucleic Acids Res 35(Database Issue):D269–D270

    PubMed  CAS  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    PubMed  CAS  Google Scholar 

  • Salmon A, Clotault J, Jenczewski E, Chable V, Manzanares-Dauleux M (2008) Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci 174(1):61–70

    CAS  Google Scholar 

  • Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53(5):766–784

    PubMed  CAS  Google Scholar 

  • Schrey AW, Coon C, Grispo M, Awad M, McCoy E, Mushinsky H, Richards CL, Martin LB (2012) Epigenetic variation may compensate for decreased genetic variation with introductions: a case study using house sparrows (Passer domesticus) on two continents. Genet Res Intl Vol 2012, Article ID 979751, 7 pages

    Google Scholar 

  • Schrey AW, Alvarez M, Foust C, Kilvitis HJ, Lee JD, Liebl AL, Martin LB, Richards CL, Robertson M (2013) Ecological epigenetics: beyond MS-AFLP. Integr Comp Biol 53(2):340–350

    PubMed  Google Scholar 

  • Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 21(4):214–222

    PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    PubMed  CAS  Google Scholar 

  • Slotkin RK, Nuthikattu S, Jiang N (2012) The evolutionary impact of transposable elements on gene and genome regulation. In: Wendel JF (ed) Molecular biology and evolution of the plant genome. Springer Verlag, Vienna/New York

    Google Scholar 

  • Tal O, Kisdi E, Jablonka E (2010) Epigenetic contribution to covariance between relatives. Genetics 184(4):1037–1050

    PubMed  CAS  Google Scholar 

  • Tost J (2010) DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol 44(1):71–81

    PubMed  CAS  Google Scholar 

  • Ungerer MC, Johnson LC, Herman MA (2008) Ecological genomics: understanding gene and genome function in the natural environment. Heredity 100(2):178–183

    PubMed  CAS  Google Scholar 

  • Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:1617–1629

    CAS  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP-a new technique for DNA-fingerprinting. Nucleic Acids Res 23(21):4407–4414

    PubMed  CAS  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characteristics. Nature 150:563–565

    Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300

    PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20:63–68

    PubMed  CAS  Google Scholar 

  • Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    PubMed  CAS  Google Scholar 

  • Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, Szyf M (2005) Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci 25(47):11045–11054

    PubMed  CAS  Google Scholar 

  • Weaver IC, Meaney MJ, Szyf M (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci USA 103(9):3480–3485

    PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci USA 102:6543–6549

    PubMed  CAS  Google Scholar 

  • Zhang D, Yang Q, Ding Y, Cao X, Xue Y, Cheng Z (2008) Cytological characterization of the tandem repetitive sequences and their methylation status in the Antirrhinum majus genome. Genomics 92(2):107–114

    PubMed  CAS  Google Scholar 

  • Zhou VW, Goren A, Bernstein BE (2011) Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12(1):7–18

    PubMed  Google Scholar 

  • Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nadia Aubin-Horth and Christian R. Landry for the invitation to write this chapter. We also thank LB Martin, M Boruta, AJ Brace and CAC Coon for feedback on previous versions of the manuscript. This work was supported by the National Science Foundation (GRFP-1144244 to HJK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly J. Kilvitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kilvitis, H.J., Alvarez, M., Foust, C.M., Schrey, A.W., Robertson, M., Richards, C.L. (2014). Ecological Epigenetics. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_10

Download citation

Publish with us

Policies and ethics