Advertisement

Mass Extinction of Species

  • Andrew Y. Glikson
Chapter
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

Early conflicts between uniformitarian and gradual theories of evolution (James Hutton: 1726–1797; Charles Lyell: 1797–1875) and catastrophic theory (Cuvier: 1769–1832) have been progressively resolved by advanced paleontological, sedimentary, volcanic and asteroid impact studies and by paleo-climate studies coupled with precise isotopic age determinations, indicating periods of gradual evolution were interrupted by abrupt events which have transformed the habitat of plants and organisms and resulted in mass extinction of species.

Keywords

Ocean Acidification Mass Extinction Benthic Foraminifera Early Jurassic Planktonic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extra-terrestrial Cause for the Cretaceous-Tertiary Extinction: Experimental results and theoretical interpretation. Science 208:1095–11086Google Scholar
  2. Alvarez W (2003) Comparing the evidence relevant to impacts and flood basalts at times of major mass extinctions. Astrobiology 3:153–161CrossRefGoogle Scholar
  3. Bachan A, Van de Schootbrugge B, Fiebig J, McRoberts C, Ciarapica G, Payne J (2012) Carbon cycle dynamics following the end-triassic mass extinction: constraints from paired δ13Ccarb and δ13Corg. Geochem Geophys Geosyst. doi: 10.1029/2012GC004150 Google Scholar
  4. Balter V et al (2008) Record of climate-driven morphological changes in 376 Ma Devonian fossils. Geology 36:907CrossRefGoogle Scholar
  5. Beerling DJ (2002a) CO2 and the end-Triassic mass extinction. Nature 415:386–387CrossRefGoogle Scholar
  6. Beerling DJ (2002b) Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids. Proc Nat Acad Sci 99:12567–12571CrossRefGoogle Scholar
  7. Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354CrossRefGoogle Scholar
  8. Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf mega fossils. Proc Nat Acad Sci 99:7836–7840CrossRefGoogle Scholar
  9. Berner RA (2005) The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim Cosmochim Acta 69:3211–3217CrossRefGoogle Scholar
  10. Bodiselitsch B, Montanari A, Koeberl C, Coccioni R (2004) Delayed climate cooling in the Late Eocene caused by multiple impacts: high-resolution geochemical studies at Massignano, Italy. Earth Planet Sci Lett 223:283–302CrossRefGoogle Scholar
  11. Brenchley PJ, Carden GA, Hints L, Kaljo D, Marshall JD, Martma T, Meidla T, Nõlvak J (2003) High-resolution isotope stratigraphy of Late Ordovician sequences: constraints on the timing of bio-events and environmental changes associated with mass extinction and glaciation. Geol Soc of Am Bull 115:89–104CrossRefGoogle Scholar
  12. Calver CR (2000) Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, South Australia, and the overprint of water column stratification. Precamb Res 100:121–150CrossRefGoogle Scholar
  13. Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary in Koeberl C and MacLeod KG eds Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geol Soc Am Spec Pap 356:55–68Google Scholar
  14. Courtillot VE, Rennes PR (2003) On the ages of flood basalt events. CR Geosci 335:113–140CrossRefGoogle Scholar
  15. Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf A.F, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geosci 4:481–485Google Scholar
  16. Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years-ago. Princeton Univ Press, Princeton and Oxford, p 296Google Scholar
  17. Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the phanerozoic. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. French BM (1998) Traces of Catastrophe. Lunar Planetary Institute 954:120Google Scholar
  19. Gardner AF, Gilmour I (2002) An organic geochemical investigation of terrestrial Cretaceous–Tertiary boundary successions from Brownie Butte, Montana, and the Raton Basin, New Mexico. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geol Soc Am Spec Pap 356:351–362Google Scholar
  20. Glass LM, Phillips D (2006) The Kalkarindji continental flood basalt province: A new Cambrian large igneous province in Australia with possible links to faunal extinctions. Geology 34:461–464Google Scholar
  21. Glikson AY (2005) Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth Planet Sci Lett 236:933–937CrossRefGoogle Scholar
  22. Glikson AY (2013) The asteroid impact connection of planetary evolution. Springer, Dordrecht, p 149CrossRefGoogle Scholar
  23. Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013a) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76CrossRefGoogle Scholar
  24. Glikson AY, Uysal IT (2013b) Geophysical and structural criteria for the identification of buried impact structures, with reference to Australia. Earth Sci Rev 125:114–122Google Scholar
  25. Gostin VA, Zbik M (1999) Petrology and microstructure of distal impact ejecta from the Flinders Ranges Australia. Metor Planet Sci 34:587–592CrossRefGoogle Scholar
  26. Gostin VA, Haines PW, Jenkins RJF, Compston W, Williams IS (1986) Impact ejecta horizon within late Precambrian shale, Adelaide Geosyncline, South Australia. Science 233:198–200CrossRefGoogle Scholar
  27. Gradstein FM, Ogg JG (2004) Geologic time scale 2004—why, how, and where next. Lethaia 37:175–181CrossRefGoogle Scholar
  28. Grasby SE, Sanei H, Beauchamp B (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci 4:104–107CrossRefGoogle Scholar
  29. Grey K (2005) Ediacaran palynology of Australia, vol 31. Association of Australasian Palaeontologists Mem, Canberra, p 439Google Scholar
  30. Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball earth or aftermath of the Acraman impact? Geology 5:459–462CrossRefGoogle Scholar
  31. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, OxfordGoogle Scholar
  32. Hames W, McHone JG, Renne P, Ruppel C (2003) The Central Atlantic Magmatic Province: insights from fragments of Pangea. Geophys Monog Series 136:267Google Scholar
  33. Joachimski MM, Xulong L, Shen S, Jiang H, Chen B, Sun Y (2012) Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195–198CrossRefGoogle Scholar
  34. Jourdan F, Marzoli A, Bertrand HS, Cirilli S, Tanner LH, Kontak DJ, McHone G, Renne PR, Bellieni G (2009) 40Ar/39Ar ages of CAMP in North America: implications for the Triassic–Jurassic boundary and the 40 K decay constant bias. Lithos 110:167–180CrossRefGoogle Scholar
  35. Kaiho KY, Kajiwara K, Tazaki M, Ueshima N, Takeda H, Kawahata T, Arinobu R, Ishiwatari A, Hirai MA (1999) Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary Boundary: Their decrease, subsequent warming, and recovery. Paleoceanography 14:511–524CrossRefGoogle Scholar
  36. Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofmov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91CrossRefGoogle Scholar
  37. Keller G (1986) Stepwise mass extinctions and impact events; late Eocene to early Oligocene. Mar Micropaleontol 10:267–293CrossRefGoogle Scholar
  38. Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757CrossRefGoogle Scholar
  39. Korte C, Hesselbo SP, Jenkyns HC, Rickaby REM (2009) Palaeo-environmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. J Geol Soc London 166:431–445Google Scholar
  40. Korte C (2010) Kozur HW (2010) Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J Asian Earth Sci 39:215–235CrossRefGoogle Scholar
  41. Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheenan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeoclimatol Palaeogeogr Palaeoecol 152:173–187CrossRefGoogle Scholar
  42. Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160CrossRefGoogle Scholar
  43. Marshall JD, Brenchley PJ, Mason P, Wolff GA, Astini RA, Hints L, Meidla T (1997) Global carbon isotopic events associated with mass extinction and glaciation in the Late Ordovician. Palaeo, Palaeoclim, Palaeoecol 132:195–210CrossRefGoogle Scholar
  44. Maruoka T, Koeberl C, Bohor BF (2007) Carbon isotopic compositions of organic matter across continental Cretaceous-Tertiary (K-T) boundary sections: Implications for paleo environment after the K-T impact event. Earth Planet Sci Lett 253:226–238CrossRefGoogle Scholar
  45. McCracken MC, Convey C, Thompson SL, Weissman PR (1994) Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth, Glob Planet Change 9:263–273Google Scholar
  46. McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:549–557CrossRefGoogle Scholar
  47. McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390CrossRefGoogle Scholar
  48. McGhee GR (1996) The late Devonian mass extinction. Columbia University Press, New YorkGoogle Scholar
  49. Monechi S, Buccianti A, Gardin S (2000) Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis. Mar Micropaleontol 39:219–237CrossRefGoogle Scholar
  50. Mora CI, Driese SG, Colarusso LA (1996) Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271:1105–1107CrossRefGoogle Scholar
  51. Olsen PE, Sues HD (1986) Correlation of continental late Triassic and early Jurassic sediments and patterns of the Triassic: Jurassic tetrapod transition. In: Padian K (ed) The beginning of the age of Dinosaurs. Cambridge University Press, Cambridge, p 321–351Google Scholar
  52. Panchuk K, Ridgwell A, Kump LR (2008) Sedimentary response to Paleocene-Eocene thermal maximum carbon release: a model-data comparison. Geology 36:315–318CrossRefGoogle Scholar
  53. Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461:1110–1113CrossRefGoogle Scholar
  54. Poag CW (1997) Roadblocks on the kill curve: testing the Raup hypothesis. Palaios 12:582–590CrossRefGoogle Scholar
  55. Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy volatile production and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102:21645–21664CrossRefGoogle Scholar
  56. Racki G (2003) End-Permian mass extinction: oceanographic consequences of double catastrophic volcanism. Lethaia 36:171–173CrossRefGoogle Scholar
  57. Renne PR, Zhang Z, Richards MA, Black MT, Basu AR (1995) Synchrony and causal relations between Permian: Triassic boundary crises and Siberian flood volcanism. Science 269:1413–1416CrossRefGoogle Scholar
  58. Ross CA, Ross RP (1995) Permian sequence stratigraphy. In: Scholle PA et al. (eds) The Permian of northern Pangea, vol 1. Springer, Berlin, p 98–123Google Scholar
  59. Rothwell GW, Scheckler SE, Gillespie WH (1989) Elkinsia gen nov a Late Devonian gymnosperm with cupulate ovules. Bot Gaz 150:170–189CrossRefGoogle Scholar
  60. Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675CrossRefGoogle Scholar
  61. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL et al (2010) The Chicxulub Asteroid impact and mass extinction at the Cretaceous-Paleogene Boundary. Science 327(5970):1214–1218CrossRefGoogle Scholar
  62. Sepkoski JJ (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, p 35–52Google Scholar
  63. Stephens NP, Sumner DY (2002) Late Devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia. Palaeo 3024:1–17Google Scholar
  64. Tohver E et al (2012) Geochronological constraints on the age of a Permo-Triassic impact event: U-Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochim et Cosmochim Acta 86:214–227CrossRefGoogle Scholar
  65. Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian crisis. Geology 29:351–354CrossRefGoogle Scholar
  66. Walter MR, Veevers JJ, Calver CR, Gorjan, Hill AC (2000) Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models: Precamb Res 100:371–433Google Scholar
  67. Ward PD (2007) Under a green sky: global warming, the mass extinctions of the past, and what they can tell us about our future. Harper Collins, New York, p 242Google Scholar
  68. Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Nat Acad Sci, pnas.1001706107Google Scholar
  69. Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33CrossRefGoogle Scholar
  70. Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158CrossRefGoogle Scholar
  71. Williams GE, Gostin VA (2005) The Acraman—Bunyeroo impact event (Ediacaran) South Australia and environmental consequences: 25 years on. Aust J Earth Sci 52:607–620CrossRefGoogle Scholar
  72. Williams GE, Schmidt PW, Boyd DM (1996) Magnetic signature and morphology of the Acraman impact structure South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:431–442Google Scholar
  73. Zachos J, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.School of Archaeology and AnthropologyAustralian National UniversityCanberraAustralia

Personalised recommendations