Advertisement

Cenozoic Atmospheres and Early Hominins

  • Andrew Y. GliksonEmail author
Chapter
  • 840 Downloads
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

The Cenozoic era includes four components (A) post K-T impact warming culminating with the Paleocene-Eocene hyperthermal at ~55 Ma; (B) long term cooling ending with a sharp temperature plunge toward formation of the Antarctic ice sheet from 32 Ma; (C) a post-32 Ma era dominated by the Antarctic ice sheet, including limited thermal rises in the end-Oligocene, mid-Miocene and end-Pliocene, and (D) Pleistocene glacial-interglacial cycles. Hominin evolution in Africa occurred during a transition from tropical to dry climates punctuated by alternating periods of extreme orbital forcing-induced glacial-interglacial cycles, suggesting variability selection of Hominids.

Keywords

Benthic Foraminifera Stone Culture Temperature Rise Rate Glacial Termination Indian Ocean Monsoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extra-terrestrial cause for the cretaceous-tertiary extinction: experimental results and theoretical interpretation. Science 208:1095–11086CrossRefGoogle Scholar
  2. Bard E, Frank M (2006) Climate change and solar variability: what’s new under the sun? Earth Planet Sci Lett 248:1–14CrossRefGoogle Scholar
  3. Beerling DJ, Royer D (2011) Convergent cenozoic CO2 history. Nat Geosci 4:418–420CrossRefGoogle Scholar
  4. Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the cretaceous-tertiary boundary from leaf mega fossils. Proc Nat Acad Sci 99:7836–7840CrossRefGoogle Scholar
  5. Berger WH, Jansen E (1994) Mid-pleistocene climate shift: the Nansen connection. In: Johannessen O, Muench R, Overland J (eds) The polar oceans and their role in shaping the global environment, vol 85., Geophys MonoAmerican Geophysical Union, Washington, DC, p 295–311CrossRefGoogle Scholar
  6. Broecker WS (2000) Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Sci Rev 51:137–154CrossRefGoogle Scholar
  7. Browning JV, Miller KG, Pak DK (1996) Global implications of lower to middle eocene sequence boundaries on the New Jersey coastal plain: the icehouse cometh. Geology 24:639–642CrossRefGoogle Scholar
  8. Chandler M, Dowsett H, Haywood A (2008) The PRISM model/data cooperative: mid-pliocene data-model comparisons. PAGES News 16(2):24–25Google Scholar
  9. Cortese G, Abelmann A, Gersonde A (2007) The last five glacial-interglacial transitions: a high-resolution 450,000-year record from the subantarctic Atlantic. Paleoocean 22:PA4203 Google Scholar
  10. Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf AF, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the palaeocene–eocene thermal maximum. Nature Geosci 4:481–485CrossRefGoogle Scholar
  11. Dakos V, Scheffer M, Van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc nat Acad Sci 105:14308–14312 Google Scholar
  12. Deino AL, Kingston JD, Glen JM, Edgar RK, Hill A (2006) Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron basin, central Kenya rift, and calibration of the Gauss/Matuyama boundary. Earth Planet Sci Lett 247:41–60CrossRefGoogle Scholar
  13. deMenocal PB (2004) African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24CrossRefGoogle Scholar
  14. EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  15. Eyles N (1993) Earth’s glacial record and its tectonic setting. Earth Sci Rev 35:1–248CrossRefGoogle Scholar
  16. Feakins SJ, deMenocal PB, Eglinton TI (2005) Biomarker records of late neogene changes in Northeast African vegetation. Geology 33:977–980CrossRefGoogle Scholar
  17. Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, deMenocal PB, Barreuri M, Pacanowski RC, Philander SG (2006) The pliocene paradox. Science 312:1485–1489CrossRefGoogle Scholar
  18. Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the phanerozoic. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochastic resonance. Physics Rev Lett 88:3–6CrossRefGoogle Scholar
  20. Glikson AY, Jablonski D, Westlake S (2010) Origin of the Mt Ashmore structural dome, west Bonaparte basin, Timor Sea. Aust J Earth Sci 57:411–430CrossRefGoogle Scholar
  21. Hansen J, Sato M, Kharecha P, Lea DW, Siddall M (2007) Climate change and trace gases. Phil Trans Roy Soc 365A:1925–1954CrossRefGoogle Scholar
  22. Hansen J, Sato M, Kharecha P, Beerling D, Masson-Delmotte V, Pagani M, Raymo M, Royer DL, Zachos JC (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci J 2:217–231CrossRefGoogle Scholar
  23. Klein R (2009) The human career: human biological and cultural origins. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  24. Lewis CFM, Miller AAL, Levac E, Piper DJW, Sonnichsen GV (2012) Lake Agassiz outburst age and routing by labrador current and the 8.2 ka cold event. Quatern Int 260:83–97CrossRefGoogle Scholar
  25. Maslin MA, Seidov D, Lowe J (2001) Synthesis of the nature and causes of sudden climate transitions during the Quaternary. In: Seidov D, Haupt BJ, Maslin M (eds) The Oceans and Rapid Climate Change: Past, Present and Future. Am. Geophys. Union Geophys. Monogr. Series 126:9–52Google Scholar
  26. Maslin MA, Trauth MH (2006) Plio-Pleistocene east african pulsed climate variability and its influence on early human evolution. In: Grine GE, Fleagle JG, Leakey RE (eds) Contributions from the third stony brook human evolution symposium and workshop 3–7 OctGoogle Scholar
  27. Maslin MA, Christensen B (2007) Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. J Human Evol 53(5):443–464CrossRefGoogle Scholar
  28. Maslin MA, Trauth MH (2009) Plio-Pleistocene East African pulsed climate variability and its influence on early human evolution. In: The first humans: origin and early evolution of the genus homo. Verteb paleobiology paleoanthropology, p 151–158Google Scholar
  29. Miller KG, Wright JD, Katz ME, Wade BS, Browning JV, Cramer BS, Rosenthal Y (2009) Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation. In: Koeberl C, Montanari A (eds) The late eocene earth—hothouse, icehouse, and impacts: geological society of American Sp. papers, vol 452, p 1–10Google Scholar
  30. Overpeck J, Bette T, Otto-Bliesner L, Gifford H, Mille M, Daniel RM, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750CrossRefGoogle Scholar
  31. Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the eocene–oligocene climate transition. Nature 461:1110–1113CrossRefGoogle Scholar
  32. Petit JR et al (1999) 420,000 years of climate and atmospheric history revealed by the Vostok deep Antarctic ice core. Nature 399:429–436CrossRefGoogle Scholar
  33. Pollard D, DeConto RM (2005) Hysteresis in cenozoic Antarctic ice sheet variations. Glob Planet Change 45:9–21CrossRefGoogle Scholar
  34. Potts R (1998) Environmental hypothesis of hominin evolution. Yearbook Phys Anthrop 41:93–136CrossRefGoogle Scholar
  35. Rahmstorf S (2002) Ocean circulation and climate over the last 120,000 years. Nature 419:6903CrossRefGoogle Scholar
  36. Rahmstorf S, Stocker TF (2004) Living with global change: consequences of changes in the earth system for human well-being.In: Steffen W (ed) Box 5.6 in: a planet under pressure—global change and the earth system. Springer, Berlin, p 240–241Google Scholar
  37. Roe G (2006) In defence of Milankovitch. Geophys Res Lett 33:L24703CrossRefGoogle Scholar
  38. Royer DL (2006) CO2-forced climate thresholds during the phanerozoic. Geochim Cosmochim Acta 70:5665–5675CrossRefGoogle Scholar
  39. Royer DL, Berner RA, Montañez I, Neil P, Tabor J, Beerling DJ (2004) CO2 as a primary driver of phanerozoic climate. GSA Today 14:3Google Scholar
  40. Ruddiman WF (1997) Tectonic uplift and climate change. Plenum Press, New York, p 535CrossRefGoogle Scholar
  41. Ruddiman WF (2008) Earth’s climate, past and future, 2nd edn. WH Freeman, New York. ISBN 978-0-7167-8490-6Google Scholar
  42. Solanki SK (2002) Solar variability and climate change: is there a link? Sol Phys 43:59–513Google Scholar
  43. Steffensen JP et al (2008) High-resolution greenland ice core data show abrupt climate change happens in few years. Science 321:680–684CrossRefGoogle Scholar
  44. Teaford MF, Ungar PS (2000) Diet and the evolution of the earliest human ancestors. Proc Nat Acad Sci USA 97:13506–13511CrossRefGoogle Scholar
  45. Trauth MH, Maslin MA, Deino AL, Strecker MR, Bergner AGN, Duhnforth M (2007) High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J Hum Evol 53:475–486CrossRefGoogle Scholar
  46. Trauth MH, Maslin MA, Deino AL, Junginger A, Lesoloyia M, Odada EO, Olago DO, Olaka LA, Strecker MR, Tiedemann R (2010) Human evolution in a variable environment: the amplifier lakes of Eastern Africa. Quater Sci Rev 29:2981–2988CrossRefGoogle Scholar
  47. Wagner F, Aaby B, Visscher H (2002) Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event. Proc Nat Acad Sci 99:12011–12014CrossRefGoogle Scholar
  48. Yokoyama Y, Esat TM (2011) Global climate and sea level: enduring variability and rapid fluctuations over the past 150,000 years. Oceanography 24:54–69CrossRefGoogle Scholar
  49. Zachos JC, Breza JR, Wise SW (1992) Early oligocene ice-sheet expansion on Antarctica–stable isotope and sedimentological evidence from Kerguelen Plateau, Southern Indian Ocean. Geology 20:569–573CrossRefGoogle Scholar
  50. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  51. Zachos J, Dickens GR, Zeebe RE (2008) An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.School of Archaeology and AnthropologyAustralian National UniversityCanberraAustralia

Personalised recommendations