Advertisement

Early Atmosphere-Ocean-Biosphere Systems

  • Andrew Y. GliksonEmail author
Chapter
  • 872 Downloads
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)

Abstract

The application of isotopic tracers to paleo-climate investigations—including oxygen (δ18O), sulphur (δ33S) and carbon (δ13C), integrated with Sedimentological and proxies studies, allows vital insights into the composition of early atmosphere–ocean-biosphere system, suggesting low atmospheric oxygen, high levels of greenhouse gases (CO2 + CH4 and likely H2S), oceanic anoxia and high acidity, limiting habitats to single-cell methanogenic and photosynthesizing autotrophs. Increases in atmospheric oxygen have been related to proliferation of phytoplankton in the oceans, likely about ~2.4 Ga (billion years-ago) and 0.7–0.6 Ga.

Keywords

Black Shale Banded Iron Formation Kaapvaal Craton Late Heavy Bombardment Deep Marine Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allwood AC, Walter MR, Burch IW, Kamber BS (2007) 343 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on. Earth Precam Res 158:198–227CrossRefGoogle Scholar
  2. Bard E, Frank M (2006) Climate change and solar variability: what’s new under the sun? Earth Planet Sci Lett 248:1–14CrossRefGoogle Scholar
  3. Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Nat Acad Sci 102:1302–1305CrossRefGoogle Scholar
  4. Beerling DJ, Royer D (2011) Convergent Cenozoic CO2 history. Nat Geosci 4:418–420CrossRefGoogle Scholar
  5. Berner RA (2004) The phanerozoic carbon cycle: CO2 and O2. Oxford University Press, New YorkGoogle Scholar
  6. Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim et Cosmochim Acta 70:5653–5664CrossRefGoogle Scholar
  7. Berner RA, Vanderbrook JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558CrossRefGoogle Scholar
  8. Brazier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81CrossRefGoogle Scholar
  9. Broecker WS (2000) Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Sci Rev 51:137–154CrossRefGoogle Scholar
  10. Canfield D, Poulton SW, Narbonne GM (2007) Late-neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95CrossRefGoogle Scholar
  11. Chyba CF (1993) The violent environment of the origin of life: progress and uncertainties. Geochim et Cosmochim Acta 57:3351–3358CrossRefGoogle Scholar
  12. Chyba CF, Sagan C (1996) Comets as the source of prebiotic organic molecules for the early Earth. In: Thomas PJ, Chyba CF, McKay CP (eds) Comets and the origin and evolution of life. Springer, New York, pp 147–174Google Scholar
  13. Cloud P (1968) Atmospheric and hydrospheric evolution of the primitive. Earth Sci 160:729–738Google Scholar
  14. Cloud P (1973) Paleoecological significance of the banded iron formation. Econ Geol 68:1135–1143CrossRefGoogle Scholar
  15. Duck LJ, Glikson M, Golding SD, Webb R, Riches J, Baiano J, Sly L (2008) Geochemistry and nature of organic matter in 35 Ga rocks from Western Australia. Geochim Cosmochim Acta 70:1457–1470Google Scholar
  16. Dunlop JSR, Buick R (1981) Archaean epiclastic sediments derived from mafic volcanics, North Pole, Pilbara Block, Western Australia. Geol Soc Aust 7:225–233Google Scholar
  17. Eigenbrode JL, Freeman KH (2006) Late Archaean rise of aerobic microbial ecosystems. Proc Nat Acad Sci 103:15759–15764CrossRefGoogle Scholar
  18. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756CrossRefGoogle Scholar
  19. Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709CrossRefGoogle Scholar
  20. Glikson AY (1972) Early precambrian evidence of a primitive ocean crust and island nuclei of sodic granite. Geol Soc Am Bull 83:3323–3344CrossRefGoogle Scholar
  21. Glikson AY (1980) Uniformitarian assumptions, plate tectonics and the Precambrian Earth. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 91–104Google Scholar
  22. Glikson AY (1984) Significance of early Archaean mafic–ultramafic xenolith patterns. In: Kroner A, Goodwin AM, Hanson GN (eds) Archaean geochemistry. Springer, Berlin, pp 263–280Google Scholar
  23. Glikson AY (2006) Asteroid impact ejecta units overlain by iron-rich sediments in 3.5–2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause–effect relationships? Earth Planet Sci Lett 246:149–160CrossRefGoogle Scholar
  24. Glikson AY (2008) Milestones in the evolution of the atmosphere with reference to climate change. Aust J of Earth Sci 55:125–139CrossRefGoogle Scholar
  25. Glikson AY (2010) Archaean asteroid impacts, banded iron formations and MIF-S anomalies: a discussion. Icarus 207:39–44CrossRefGoogle Scholar
  26. Glikson AY, Vickers J (2007) Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton. Western Australia. Earth Planet Sci Lett 254:214–226CrossRefGoogle Scholar
  27. Golding S, Glikson MV (2011) Earliest life on earth: habitats, environments and methods of detection. Springer, DordrechtGoogle Scholar
  28. Gold T (1999) The deep hot biosphere. Springer, New York, p 235CrossRefGoogle Scholar
  29. Goodwin AM, Monster J, Thode HG (1976) Carbon and sulfur isotope abundances in Archean iron-formations and early Precambrian life. Econ Geol 71:870–891CrossRefGoogle Scholar
  30. Gould SJ (1990) Wonderful life: the burgess shale and the nature of history. W W Norton and Company Inc, New York, p 347Google Scholar
  31. Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Adam C, Hugh A, Rice N (2005) Toward a Neoproterozoic composite carbon-isotope record. GSA Bull 117:1181–1207CrossRefGoogle Scholar
  32. Hansen J, Sato M, Kharecha P, Lea DW, Siddall M (2007) Climate change and trace gases. Phil Trans Roy Soc 365A:1925–1954CrossRefGoogle Scholar
  33. Hoffman PF, Schrag DP (2000) Snowball Earth. Sci Am 282:68–75CrossRefGoogle Scholar
  34. Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155CrossRefGoogle Scholar
  35. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1342–1346CrossRefGoogle Scholar
  36. Hoffman PF, Halverson GP, Domack JM, Husson JA, Higgins D, Schrag DP (2007) Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous? Earth Planet Sci Lett 258:114–131CrossRefGoogle Scholar
  37. Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga Coniform Stromatolites in the Warrawoona Group, Western Australia. Bull Geol Soc Am 111:1256–1262CrossRefGoogle Scholar
  38. Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Philos Trans R Soc Biol Sci 361:917–929CrossRefGoogle Scholar
  39. Kirschvink JL (1992) In: Schopf JW, Klein C (eds.) The proterozoic biosphere. Cambridge Univ Press, New York, p 51–52Google Scholar
  40. Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeo Palaeoclimat Palaeoecol 219:53–69CrossRefGoogle Scholar
  41. Knauth LP, Lowe DR (2003) High Archaean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bulletin 115(5):566–580CrossRefGoogle Scholar
  42. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc London Part B 361:1023–1038CrossRefGoogle Scholar
  43. Konhausser K, Hamada T, Raiswell R, Morris R, Ferris F, Southam G, Canfield D (2002) Could bacteria have formed the Precambrian banded iron-formations? Geology 30:1079–1082CrossRefGoogle Scholar
  44. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Nat Acad Sci 102:11131–11136CrossRefGoogle Scholar
  45. Kump LR (2009) The rise of atmospheric oxygen. Nature 451:277–278CrossRefGoogle Scholar
  46. Longdoz B, Francois LM (1997) The faint young sun climatic paradox: influence of the continental configuration and of the seasonal cycle on the climatic stability. Global Planet Change 14:97–112CrossRefGoogle Scholar
  47. Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390CrossRefGoogle Scholar
  48. McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim Cosmochim Acta 58:4717–4738CrossRefGoogle Scholar
  49. Mojzsis SJ, Harrison TM (2000) Vestiges of a beginnings: clues to the emergent biosphere recorded in the oldest known rocks. GSA Today 10:1–6Google Scholar
  50. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181CrossRefGoogle Scholar
  51. Morris RC (1993) Genetic modeling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precamb Res 60:243–286CrossRefGoogle Scholar
  52. Nutman AP, Friend CRL (2006) Re-evaluation of oldest life evidence: Infrared absorbance spectroscopy and petrography of apatites in ancient metasediments, Akilia, W. Greenland. Precamb Res 147:100–106CrossRefGoogle Scholar
  53. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911CrossRefGoogle Scholar
  54. Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archaean. Geochim et Cosmochim Acta 65:4215–4229CrossRefGoogle Scholar
  55. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–749CrossRefGoogle Scholar
  56. Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675CrossRefGoogle Scholar
  57. Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO change: evaluating geochemical and paleobiological approaches. Earth Sci Rev 54:349–392CrossRefGoogle Scholar
  58. Royer DL, Berner RA, Montañez I, Neil P, Tabor J, Beerling DJ (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14:3Google Scholar
  59. Royer DL, Berner RA, Park J (2007) Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446:530–532CrossRefGoogle Scholar
  60. Ruddiman WF (1997) Tectonic uplift and climate change. Plenum Press, New York, p 535CrossRefGoogle Scholar
  61. Ruddiman WF (2003) Orbital insolation, ice volume, and greenhouse gases. Quatern Sci Rev 22:1597–1629CrossRefGoogle Scholar
  62. Ruddiman WF (2008) Earth’s climate, past and future (2nd edn). WH Freeman ISBN 978-0-7167-8490-6Google Scholar
  63. Ryder G (1991) Accretion and bombardment in the Earth–Moon system: the Lunar record. Lunar Planet Sci Instit Contrib 746:42–43Google Scholar
  64. Sagan C, Mullen G (1972) Earth and mars: evolution of atmospheres and surface temperatures. Science 177:52–56CrossRefGoogle Scholar
  65. Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73CrossRefGoogle Scholar
  66. Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: stromatolites and microfossils. Precamb Res 158:141–155CrossRefGoogle Scholar
  67. Siegenthaler U et al (2005) Stable carbon cycle–climate relationship during the late pleistocene. Science 310:1313–1317CrossRefGoogle Scholar
  68. Solanki SK (2002) Solar variability and climate change: is there a link? Sol Phys 43:59–513Google Scholar
  69. Stevenson DJ (1987) Origin of the Moon-the collision hypothesis. Ann Rev Earth Planet Sci 15:271–315CrossRefGoogle Scholar
  70. Strik G, de Wit MJ, Langereis CG (2007) Palaeomagnetism of the Neoarchaean Pongola and Ventersdorp supergroups and an appraisal of the 30–19 Ga apparent polar wander path of the Kaapvaal Craton, Southern Africa. Precamb Res 153:96–115CrossRefGoogle Scholar
  71. Sugitania K, Grey K, Nagaokac T, Mimurad K, Walter M (2009) Taxonomy and biogenicity of Archaean spheroidal microfossils (ca 3.0 Ga) from the Mount Goldsworthy–Mount Grant area in the northeastern Pilbara Craton, Western Australia. Precamb Res 173:50–59CrossRefGoogle Scholar
  72. Uwins PJR et al (1998) Novel nano-organisms from Australian sandstones. Am Mineral 83:1541–1550Google Scholar
  73. Valley JW (2008) The origin of habitats. Geology 36:911–912CrossRefGoogle Scholar
  74. Van Kranendonk MJ (2007) Tectonics of the early Earth. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, developments in precambrian geology, vol 15. Elsevier, Amsterdam, p 1105–1116Google Scholar
  75. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178CrossRefGoogle Scholar
  76. Young GM, von Brunn V, Gold WEL, Minter DJC (1998) Earth’s oldest reported glaciation: physical and chemical evidence from the Archean Mozoan Group (~2.9 Ga). S Africa J Geol 106:523–538Google Scholar
  77. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  78. Zahnle K, Sleep NH (1997) Impacts and the early evolution of life. In: Thomas PJ, Chyba CF, McKay CP (eds) Comets and the origin and evolution of life. Springer, New York, p 175–208CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.School of Archaeology and AnthropologyAustralian National UniversityCanberraAustralia

Personalised recommendations