Skip to main content

Chemical Genomic Approaches to Eradicate Leukemia Stem Cells

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 11

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 11))

  • 1276 Accesses

Abstract

Lead target approaches have dominated efforts in cancer developmental therapeutics. However, recent advances in genomics and computational biology have facilitated the development of chemical genomic approaches in which the transcriptional changes resulting from drug exposure are used to infer potential relationships between drugs and biological states. Recent work in the area of transcription based drug discovery has accelerated the development of pre-clinical therapies for acute myeloid leukemia (AML). AML is a heterogeneous disease that consists of a subpopulation of leukemia stem cells (LSCs). The LSC subpopulation represents a chemoresistant fraction of the overall tumor and thought to drive relapse, which produces high mortality rates in AML. LSC ablation is a complex phenotype only discerned through costly and time-consuming murine xenotransplantation assays. This chapter discusses advances in transcription based drug discovery and how it has been applied to accelerating the discovery of drugs that target LSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashton JM, Balys M, Neering SJ, Hassane DC, Cowley G, Root DE, Miller PG, Ebert BL, McMurray HR, Land H, Jordan CT (2012) Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells. Cell Stem Cell 11:359–372

    Article  PubMed  CAS  Google Scholar 

  • Banerji V, Frumm SM, Ross KN, Li LS, Schinzel AC, Hahn CK, Kakoza RM, Chow KT, Ross L, Alexe G, Tolliday N, Inguilizian H, Galinsky I, Stone RM, DeAngelo DJ, Roti G, Aster JC, Hahn WC, Kung AL, Stegmaier K (2012) The intersection of genetic and chemical genomic screens identifies GSK-3alpha as a target in human acute myeloid leukemia. J Clin Invest 122:935–947

    Article  PubMed  CAS  Google Scholar 

  • Capdeville R, Buchdunger E, Zimmermann J, Matter A (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1:493–502

    Article  PubMed  CAS  Google Scholar 

  • Conconi M, Friguet B (1997) Proteasome inactivation upon aging and on oxidation-effect of HSP 90. Mol Biol Rep 24:45–50

    Article  PubMed  CAS  Google Scholar 

  • Corsello SM, Roti G, Ross KN, Chow KT, Galinsky I, DeAngelo DJ, Stone RM, Kung AL, Golub TR, Stegmaier K (2009) Identification of AML1-ETO modulators by chemical genomics. Blood 113:6193–6205

    Article  PubMed  CAS  Google Scholar 

  • Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut JA, Olive D (2000) Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60:4403–4411

    PubMed  CAS  Google Scholar 

  • de The H, Chen Z (2010) Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10:775–783

    Article  PubMed  Google Scholar 

  • Dick JE (2005) Acute myeloid leukemia stem cells. Ann N Y Acad Sci 1044:1–5

    Article  PubMed  Google Scholar 

  • Dick JE, Lapidot T, Pflumio F (1991) Transplantation of normal and leukemic human bone marrow into immune-deficient mice: development of animal models for human hematopoiesis. Immunol Rev 124:25–43

    Article  PubMed  CAS  Google Scholar 

  • Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Lowenberg B, Bloomfield CD (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115:453–474

    Article  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed  CAS  Google Scholar 

  • Felipe Rico J, Hassane DC, Guzman ML (2012) Acute myelogenous leukemia stem cells: from bench to bedside. Cancer Lett. Available online 16 June 2012, ISSN 0304-3835, http://dx.doi.org/10.1016/j.canlet.2012.05.034

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT (2001) Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98:2301–2307

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ, Jordan CT (2002) Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 99:16220–16225

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105:4163–4169

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, Becker MW, Bennett JM, Sullivan E, Lachowicz JL, Vaughan A, Sweeney CJ, Matthews W, Carroll M, Liesveld JL, Crooks PA, Jordan CT (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110:4427–4435

    Article  PubMed  CAS  Google Scholar 

  • Hassane DC, Guzman ML, Corbett C, Li X, Abboud R, Young F, Liesveld JL, Carroll M, Jordan CT (2008) Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood 111:5654–5662

    Article  PubMed  CAS  Google Scholar 

  • Hassane DC, Sen S, Minhajuddin M, Rossi RM, Corbett CA, Balys M, Wei L, Crooks PA, Guzman ML, Jordan CT (2010) Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood 116:5983–5990

    Article  PubMed  CAS  Google Scholar 

  • Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A, Nieto M, Du J, Stegmaier K, Raj SM, Maloney KN, Clardy J, Hahn WC, Chiosis G, Golub TR (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10:321–330

    Article  PubMed  CAS  Google Scholar 

  • Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–126

    Article  PubMed  CAS  Google Scholar 

  • Jin HZ, Hwang BY, Kim HS, Lee JH, Kim YH, Lee JJ (2002) Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J Nat Prod 65:89–91

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT, Guzman ML (2004) Mechanisms controlling pathogenesis and survival of leukemic stem cells. Oncogene 23:7178–7187

    Article  PubMed  CAS  Google Scholar 

  • Lamb J (2007) The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 7:54–60

    Article  PubMed  CAS  Google Scholar 

  • McMurray HR, Sampson ER, Compitello G, Kinsey C, Newman L, Smith B, Chen SR, Klebanov L, Salzman P, Yakovlev A, Land H (2008) Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype. Nature 453:1112–1116

    Article  PubMed  CAS  Google Scholar 

  • Nakaso K, Yano H, Fukuhara Y, Takeshima T, Wada-Isoe K, Nakashima K (2003) PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett 546:181–184

    Article  PubMed  CAS  Google Scholar 

  • Osherov N, Gazit A, Gilon C, Levitzki A (1993) Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J Biol Chem 268:11134–11142

    PubMed  CAS  Google Scholar 

  • Page S, Fischer C, Baumgartner B, Haas M, Kreusel U, Loidl G, Hayn M, Ziegler-Heitbrock HW, Neumeier D, Brand K (1999) 4-Hydroxynonenal prevents NF-kappaB activation and tumor necrosis factor expression by inhibiting IkappaB phosphorylation and subsequent proteolysis. J Biol Chem 274:11611–11618

    Article  PubMed  CAS  Google Scholar 

  • Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O, Huberman K, Cheng J, Viale A, Socci ND, Heguy A, Cherry A, Vance G, Higgins RR, Ketterling RP, Gallagher RE, Litzow M, van den Brink MR, Lazarus HM, Rowe JM, Luger S, Ferrando A, Paietta E, Tallman MS, Melnick A, Abdel-Wahab O, Levine RL (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366:1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Roboz GJ (2011) Novel approaches to the treatment of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2011:43–50

    Article  PubMed  Google Scholar 

  • Sampson ER, McMurray HR, Hassane DC, Newman L, Salzman P, Jordan CT, Land H (2012) Gene signature critical to cancer phenotype as a paradigm for anticancer drug discovery. Oncogene, Sep 10. doi:10.1038/Onc.2012.389

  • Siow RC, Ishii T, Mann GE (2007) Modulation of antioxidant gene expression by 4-hydroxynonenal: atheroprotective role of the Nrf2/ARE transcription pathway. Redox Rep 12:11–15

    Article  PubMed  CAS  Google Scholar 

  • Stegmaier K, Ross KN, Colavito SA, O’Malley S, Stockwell BR, Golub TR (2004) Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat Genet 36:257–263

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP (2007) GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 23:3251–3253

    Article  PubMed  CAS  Google Scholar 

  • Umemura K, Itoh T, Hamada N, Fujita Y, Akao Y, Nozawa Y, Matsuura N, Iinuma M, Ito M (2008) Preconditioning by sesquiterpene lactone enhances H2O2-induced Nrf2/ARE activation. Biochem Biophys Res Commun 368:948–954

    Article  PubMed  CAS  Google Scholar 

  • van Rhenen A, Feller N, Kelder A, Westra AH, Rombouts E, Zweegman S, van der Pol MA, Waisfisz Q, Ossenkoppele GJ, Schuurhuis GJ (2005) High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 11:6520–6527

    Article  PubMed  Google Scholar 

  • Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, Opferman JT, Sallan SE, den Boer ML, Pieters R, Golub TR, Armstrong SA (2006) Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10:331–342

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane C. Hassane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sen, S., Guzman, M.L., Hassane, D.C. (2014). Chemical Genomic Approaches to Eradicate Leukemia Stem Cells. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 11. Stem Cells and Cancer Stem Cells, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7329-5_8

Download citation

Publish with us

Policies and ethics