Advertisement

Spinal Cord Injury Engineering Using Neural Stem Cells

  • Martin M. Mortazavi
  • Nimer Adeeb
  • Aman Deep
  • R. Shane Tubbs
Chapter
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 11)

Abstract

Overtime, various modalities of spinal cord injury (SCI) treatment have been trialed. Of these, the most attractive is the cellular transplantation of neural and mesenchymal stem cells. Extensive experimental studies have been done to identify the safety and effectiveness of their transplantation in animal and human models. In this chapter, the different sources, isolation and transplantation of these multipotent stem cells, and associated outcomes will be discussed.

Keywords

Spinal Cord Injury Neural Stem Cell Injured Spinal Cord Bone Marrow Stem Cell American Spinal Injury Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 167(1):27–39PubMedCrossRefGoogle Scholar
  2. Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV (2011) Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg 25(4):516–522PubMedCrossRefGoogle Scholar
  3. Carpenter MK, Cui X, Hu ZY, Jackson J, Sherman S, Seiger A, Wahlberg LU (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158(2):265–278PubMedCrossRefGoogle Scholar
  4. Chen Q, Long Y, Yuan X, Zou L, Sun J, Chen S, Perez-Polo JR, Yang K (2005) Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res 80(5):611–619PubMedCrossRefGoogle Scholar
  5. Chen X, Katakowski M, Li Y, Lu D, Wang L, Zhang L, Chen J, Xu Y, Gautam S, Mahmood A, Chopp M (2002) Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 69(5):687–691PubMedCrossRefGoogle Scholar
  6. Cherian, E., G. Nandhini and A. Kurian (2011). Stem Cells, Book Stem Cells. 1. Jaypee Brothers Medical Pub. New Delhi, India.Google Scholar
  7. Chong ZZ, Kang JQ, Maiese K (2002) Hematopoietic factor erythropoietin fosters neuroprotection through novel signal transduction cascades. J Cereb Blood Flow Metab 22(5):503–514PubMedCrossRefGoogle Scholar
  8. Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102(39):14069–14074PubMedCrossRefGoogle Scholar
  9. Emgard M, Holmberg L, Samuelsson EB, Bahr BA, Falci S, Seiger A, Sundstrom E (2009) Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord. Brain Res 1278:15–26PubMedCrossRefGoogle Scholar
  10. Fujimoto Y, Abematsu M, Falk A, Tsujimura K, Sanosaka T, Juliandi B, Semi K, Namihira M, Komiya S, Smith A, Nakashima K (2012) Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells 30(6):1163–1173PubMedCrossRefGoogle Scholar
  11. Geffner LF, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad AH, Montenegro X, Gonzalez R, Silva F (2008) Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 17(12):1277–1293PubMedCrossRefGoogle Scholar
  12. Hatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, Baharvand H (2009) Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11(5):618–630PubMedCrossRefGoogle Scholar
  13. Hwan YS, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min BH, Kim EY, Choi BH, Park H, Ha Y (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 25(8):2066–2073Google Scholar
  14. Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H (2005) Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 80(2):182–190PubMedCrossRefGoogle Scholar
  15. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26(13):3377–3389PubMedCrossRefGoogle Scholar
  16. Kim HT, Kim IS, Lee IS, Lee JP, Snyder EY, Park KI (2006) Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committed. Exp Neurol 199(1):222–235PubMedCrossRefGoogle Scholar
  17. King C, Patel S, Rameshwar P (2012) The role of human postnatal bone marrow-derived mesenchymal stem cells and their importance in growth, spinal cord injury and other neurodegenerative disorders. Springer, Handbook of Growth and Growth Monitoring in Health and Disease. V. R. PreedyGoogle Scholar
  18. Kishk NA, Gabr H, Hamdy S, Afifi L, Abokresha N, Mahmoud H, Wafaie A, Bilal D (2010) Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair 24(8):702–708PubMedCrossRefGoogle Scholar
  19. Mehler MF, Rozental R, Dougherty M, Spray DC, Kessler JA (1993) Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 362(6415):62–65PubMedCrossRefGoogle Scholar
  20. Nandoe Tewarie RS, Hurtado A, Bartels RH, Grotenhuis A, Oudega M (2009) Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 32(2):105–114PubMedGoogle Scholar
  21. Nori S, Okada Y, Yasuda A, Tsuji O, Takahashi Y, Kobayashi Y, Fujiyoshi K, Koike M, Uchiyama Y, Ikeda E, Toyama Y, Yamanaka S, Nakamura M, Okano H (2011) Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 108(40):16825–16830PubMedCrossRefGoogle Scholar
  22. Ostenfeld T, Caldwell MA, Prowse KR, Linskens MH, Jauniaux E, Svendsen CN (2000) Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp Neurol 164(1):215–226PubMedCrossRefGoogle Scholar
  23. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, Dixit A, Rauthan A, Murgod U, Totey S (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11(7):897–911PubMedCrossRefGoogle Scholar
  24. Park HC, Shim YS, Ha Y, Hwan YS, Park SR, Choi BH, Park HS (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11(5–6):913–922Google Scholar
  25. Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK, Jeon SR (2012) Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 70(5):1238–1247, discussion 1247PubMedCrossRefGoogle Scholar
  26. Quinn SM, Walters WM, Vescovi AL, Whittemore SR (1999) Lineage restriction of neuroepithelial precursor cells from fetal human spinal cord. J Neurosci Res 57(5):590–602PubMedCrossRefGoogle Scholar
  27. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710PubMedCrossRefGoogle Scholar
  28. Sabate O, Horellou P, Vigne E, Colin P, Perricaudet M, Buc-Caron MH, Mallet J (1995) Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nat Genet 9(3):256–260PubMedCrossRefGoogle Scholar
  29. Sahni V, Kessler JA (2010) Stem cell therapies for spinal cord injury. Nat Rev Neurol 6(7):363–372PubMedCrossRefGoogle Scholar
  30. Sandner B, Prang P, Rivera FJ, Aigner L, Blesch A, Weidner N (2012) Neural stem cells for spinal cord repair. Cell Tissue Res 349(1):349–362PubMedCrossRefGoogle Scholar
  31. Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148(1):135–146PubMedCrossRefGoogle Scholar
  32. Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA (1998) A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 85(2):141–152PubMedCrossRefGoogle Scholar
  33. Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P, Padr R, Neuwirth J, Komrska V, Vavra V, Stulik J, Bojar M (2006) Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 15(8–9):675–687PubMedCrossRefGoogle Scholar
  34. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  35. Tarasenko YI, Gao J, Nie L, Johnson KM, Grady JJ, Hulsebosch CE, McAdoo DJ, Wu P (2007) Human fetal neural stem cells grafted into contusion-injured rat spinal cords improve behavior. J Neurosci Res 85(1):47–57PubMedCrossRefGoogle Scholar
  36. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedCrossRefGoogle Scholar
  37. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599PubMedCrossRefGoogle Scholar
  38. Tsuji O, Miura K, Fujiyoshi K, Momoshima S, Nakamura M, Okano H (2011) Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics 8(4):668–676PubMedCrossRefGoogle Scholar
  39. Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E, Frolichsthal-Schoeller P, Cova L, Arcellana-Panlilio M, Colombo A, Galli R (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156(1):71–83PubMedCrossRefGoogle Scholar
  40. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26(11):2865–2874PubMedCrossRefGoogle Scholar
  41. Zhang Q, Liu G, Wu Y, Sha H, Zhang P, Jia J (2011) BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway. Molecules 16(12):10146–10156PubMedCrossRefGoogle Scholar
  42. Zhilai Z, Hui Z, Anmin J, Shaoxiong M, Bo Y, Yinhai C (2012) A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury. Brain Res 1481:79–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Martin M. Mortazavi
    • 1
  • Nimer Adeeb
    • 2
  • Aman Deep
    • 2
  • R. Shane Tubbs
    • 2
  1. 1.Department of Neurological SurgeryUniversity of WashingtonSeattleUSA
  2. 2.Pediatric NeurosurgeryChildren’s HospitalBirminghamUSA

Personalised recommendations