Advertisement

A Pedagogical Cloud for Reusability, Interoperability and Portability of Pedagogical Indicators

  • Mariem ChaabouniEmail author
  • Mona Laroussi
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

This paper presents a pedagogical Cloud for analyzing usage learner tracks and managing indicators on educational scenarios execution. This Cloud offers a framework enabling the exploitation and the modeling of the pedagogical indicators in a collaborative and cooperative way. This approach aims to assist the tutor in the reengineering of his pedagogical scenarios through the indicators calculation.

Keywords

Computer Environment of Human Learning (CEHL) Cloud computing Pedagogical indicators Tracks analysis Reusability Interoperability Portability Web services 

References

  1. 1.
    Ben sassi M, Laroussi M (2012) Vers une modélisation standardisée des traces des apprenants. Frantice.net 5:94–107Google Scholar
  2. 2.
    Pernin J (2005) CSE, un modèle de traitement de traces. Research intern report CLIPS-IMAGGoogle Scholar
  3. 3.
    Pernin J, Lejeune A (2004) Modèles pour la réutilisation de scénarios d’apprentissage. TICE Méditerranée 18, NiceGoogle Scholar
  4. 4.
    Ma H, Zheng Z, Ye F, Tong S (2010) The applied research of cloud computing in the construction of collaborative learning platform under e-learning environment. In: System science, engineering Design and manufacturing informatization (ICSEM), 2010 international conference, vol 1, pp 190–192Google Scholar
  5. 5.
    Masud MAH, Huang X (2012) An e-learning system architecture based on cloud computing. World Acad Sci, Eng Technol 62(2012):74–78Google Scholar
  6. 6.
    Pocatilu P, Alecu F, Vetrici M (2010) Measuring the efficiency of cloud computing for e-learning systems. WSEAS Trans Comput 9(1):42–51Google Scholar
  7. 7.
    Tuncay E (2010) Effective use of cloud computing in educational institutions. Proc Soc Behav Sci 47:938–942Google Scholar
  8. 8.
    Mikroyannidis A (2012) A semantic framework for cloud learning environments. In: Chao L (ed). Cloud computing for teaching and learning: strategies for design and implementation. IGI Global, Hershey, pp 17–31Google Scholar
  9. 9.
    Ngoc DPT, Iksal S, Choquet C (2010) Re-engineering of pedagogical scenarios using the data combination language and usage tracking language. In: IEEE 10th international conference, advanced learning technologies (ICALT), 2010, pp 506–510Google Scholar
  10. 10.
    Bousbia N, Labat JM (2007) Perception de l’activité de l’apprenant dans un environnement de formation sémantique du parcours de l’apprenant. EIAH 2007 act conferenceGoogle Scholar
  11. 11.
    Dimitrakopoulou A (2004) State of the art on interaction and collaboration analysis. ReportGoogle Scholar
  12. 12.
    Elammari M, Khoukhi F (2010) To an adaptive pedagogic system in EIAH. In: International conference on models of information and communication systemsGoogle Scholar
  13. 13.
    Gendron E (2010) Cadre conceptuel pour l’élaboration d’indicateurs de collaboration à partir des traces d’activité. Ph.D thesis, Claude Bernard University, Lyon IGoogle Scholar
  14. 14.
    Iksal S, Choquet C (2005) Usage analysis driven by models in a pedagogical context. In: Workshop on usage analysis in learning systems, 12th international conference on artificial intelligence in education (AIED 2005), Amsterdam, pp 49–56Google Scholar
  15. 15.
    Diagne F (2009) Instrumentation de la supervision par la réutilisation d’indicateurs: modeles et architecture. Ph.D thesis, Joseph-Fourier University, GrenobleGoogle Scholar
  16. 16.
    Bansal E, Bansal N (2011) An analysis of cloud computing. Int J Comput Corp ResGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.RIADI LaboratoryUniversity of ManoubaTunisTunisia

Personalised recommendations