The gp82 Surface Molecule of Trypanosoma cruzi Metacyclic Forms

  • Cristian Cortez
  • Tiago J. P. Sobreira
  • Fernando Y. Maeda
  • Nobuko Yoshida
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 74)

Abstract

Gp82 is a surface glycoprotein expressed in Trypanosoma cruzi metacyclic trypomastigotes, the parasite forms from the insect vector that initiate infection in the mammalian host. Studies with metacyclic forms generated in vitro, as counterparts of insect-borne parasites, have shown that gp82 plays an essential role in host cell invasion and in the establishment of infection by the oral route. Among the gp82 properties relevant for infection are the gastric mucin-binding capacity and the ability to induce the target cell signaling cascades that result in actin cytoskeleton disruption and lysosome exocytosis, events that facilitate parasite internalization. The gp82 sequences from genetically divergent T. cruzi strains are highly conserved, displaying >90 % identity. Both the host cell-binding sites, as well as the gastric mucin-binding sequence of gp82, are localized in the C-terminal domain of the molecule. In the gp82 structure model, the main cell-binding site consists of an α-helix, which connects the N-terminal β-propeller domain to the C-terminal β-sandwich domain, where the second cell binding site is nested. The two cell binding sites are fully exposed on gp82 surface. Downstream and close to the α-helix is the gp82 gastric mucin-binding site, which is partially exposed. All available data support the notion that gp82 is structurally suited for metacyclic trypomastigote invasion of host cells and for initiating infection by the oral route.

Keywords

Gastric Mucin Host Cell Invasion Gp82 Sequence Metacyclic Trypomastigotes Metacyclic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ACD

Acute Chagas’ disease

DAG

Diacylglycerol

EIEC

Enteroinvasive Escherichia coli

GST

Glutathione S transferase

IP3

Inositol 1,4,5-triphosphate

MT

Metacyclic trypomastigotes

mTOR

Mammalian target of rapamycin

PI3K

Phosphatidylinositol 3-kinase

PTK

Protein tyrosine kinase

TCT

Tissue culture trypomastigotes

PKC

Protein kinase C

PLC

Phospholipase C

Notes

Acknowledgements

 Work supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Cientfico e Tecnológico (CNPq).

References

  1. Alarcón de Noya BA, Diaz-Bello Z, Colmenares C, Ruiz-Guevara R, Mauriello L, Zavala-Jaspe R, Suarez JA, Abate T, Naranjo L, Paiva M, Rivas L, Castro J, Márques J, Mendoza I, Acquatella H, Torres J, Noya O (2010) Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis 201:1308–1315PubMedCrossRefGoogle Scholar
  2. Alves MJM, Colli W (2008) Role of the gp85/trans-sialidase superfamily of glycoproteins in the interaction of Trypanosoma cruzi with host structures. Subcell Biochem 47:58–69PubMedCrossRefGoogle Scholar
  3. Amaya MF, Buschiazzo A, Nguyen T, Alzari PM (2003) The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase. J Mol Biol 325:773–784PubMedCrossRefGoogle Scholar
  4. Amiri KI, Richmond A (2005) Role of nuclear factor-kappa B in melanoma. Cancer Metastasis Rev 24:301–313PubMedCrossRefGoogle Scholar
  5. Araya JE, Cano MI, Yoshida N, da Silveira JF (1994) Cloning and characterization of a gene for the stage-specific 82-kDa surface antigen of metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 65:161–169PubMedCrossRefGoogle Scholar
  6. Atayde VD, Cortez M, Souza R, da Silveira JF, Yoshida N (2007) Expression and cellular localization of molecules of gp82 family in Trypanosoma.cruzi metacyclic trypomastigotes. Infect Immun 75:3264–3270PubMedCrossRefGoogle Scholar
  7. Atayde VD, Jasiulionis M, Cortez M, Yoshida N (2008) A recombinant protein based on Trypanosoma cruzi surface molecule gp82 induces apoptotic cell death in melanoma cells. Melanoma Res 18:172–183PubMedCrossRefGoogle Scholar
  8. Bastos CJC, Aras R, Mota G, Reis F, Dias JP, Jesus RS, Freire MS, Araújo EG, Prazeres J, Grassi MFR (2010) Clinical outcomes of thirteen patients with acute Chagas disease acquired through oral transmission from two urban outbreaks in Northeastern Brazil. PLoS Negl Trop Dis 4(6):e711PubMedCrossRefGoogle Scholar
  9. Bayer-Santos E, Gentil LG, Cordero EM, Corrêa PR, da Silveira JF (2012) Regulatory elements in the 3′ untranslated region of the GP82 glycoprotein are responsible for its stage-specific expression in Trypanosoma cruzi metacyclic trypomastigotes. Acta Trop 123:230–233PubMedCrossRefGoogle Scholar
  10. Beltrão HB, Cerroni MP, Freitas DR, Pinto AY, Valente VC, Valente SA, Costa EG, Sobel J (2009) Investigation of two outbreaks of suspected oral transmission of acute Chagas disease in the Amazon region, Para State, Brazil, in 2007. Trop Doct 39:231–232CrossRefGoogle Scholar
  11. Brener Z, Chiari E (1963) Variações morfológicas observadas em diferentes amostras de Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 5:220–224PubMedGoogle Scholar
  12. Burleigh BA, Andrews NW (1998) Signaling and host cell invasion by Trypanosoma cruzi. Curr Opin Microbiol 1:451–465CrossRefGoogle Scholar
  13. Buschiazzo A, Amaya MF, Cremona ML, Frasch AC, Alzari PM (2002) The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol Cell 10:757–768PubMedCrossRefGoogle Scholar
  14. Cavalcanti LPG, Rolim DB, Neto RJP, Vilar DCL, Nogueira JOL, Pompeu MML, Teixeira MJ, Sousa AQ (2009) Microepidemia de doença de Chagas aguda por transmissão oral no Ceará. Cad Saúde Colet 17:911–921Google Scholar
  15. Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64:821–846PubMedCrossRefGoogle Scholar
  16. Cortez M, Neira I, Ferreira D, Luquetti AO, Rassi A, Atayde VD, Yoshida N (2003) Infection by Trypanosoma cruzi metacyclic forms deficient in gp82 but expressing a related surface molecule gp30. Infect Immun 71:6184–6191PubMedCrossRefGoogle Scholar
  17. Cortez M, Atayde V, Yoshida N (2006) Host cell invasion mediated by Trypanosoma cruzi surface molecule gp82 is associated with F-actin disassembly and is inhibited by enteroinvasive Escherichia coli. Microbes Infect 8:1502–1512PubMedCrossRefGoogle Scholar
  18. Cortez C, Yoshida N, Bahia D, Sobreira TJP (2012a) Structural basis of the interaction of a Trypanosoma cruzi surface molecule implicated in oral infection with host cells and gastric mucin. PLoS One 7(7):e42153PubMedCrossRefGoogle Scholar
  19. Cortez C, Martins RM, Alves RM, Silva RC, Bilches LC, Macedo S, Atayde VD, Kawashita SY, Briones MRS, Yoshida N (2012b) Differential infectivity by the oral route of Trypanosoma cruzi lineages derived from Y strain. PLoS Negl Trop Dis 6(10):e1804PubMedCrossRefGoogle Scholar
  20. Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigm of enteroinvasive pathogens. Science 304:242–248PubMedCrossRefGoogle Scholar
  21. Cossart P, Pizarro-Cerdá J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular function. Trends Cell Biol 13:23–31PubMedCrossRefGoogle Scholar
  22. Deane MP, Lenzi HL, Jansen A (1984) Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis. Mem Inst Oswaldo Cruz 79:513–515PubMedCrossRefGoogle Scholar
  23. Dhawan P, Richmond A (2002) A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 277:7920–7928PubMedCrossRefGoogle Scholar
  24. Dias JP, Bastos C, Araújo E, Mascarenhas AV, Netto EM, Grassi F, Silva M, Tatto E, Mendonça J, Araújo RF, Shikanai-Yasuda MA, Aras R (2008) Acute Chagas disease outbreak associated with oral transmission. Rev Soc Bras Med Trop 41:296–300PubMedCrossRefGoogle Scholar
  25. Docampo R, Moreno SN (1996) The role of Ca2+ in the process of cell invasion by intracellular parasites. Parasitol Today 12:61–65PubMedCrossRefGoogle Scholar
  26. Eickhoff CS, Giddings OK, Yoshida N, Hoft DF (2010) Immune responses to gp82 provide protection against mucosal Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 105:687–691PubMedCrossRefGoogle Scholar
  27. Favoreto S Jr, Dorta ML, Yoshida N (1998) Trypanosoma cruzi 175 kDa protein tyrosine phosphorylation is associated with host cell invasion. Exp Parasitol 89:188–194PubMedCrossRefGoogle Scholar
  28. Ferreira D, Cortez M, Atayde VD, Yoshida N (2006) Actin cytoskeleton-dependent and -independent host cell invasion by Trypanosoma cruzi is mediated by distinct parasite surface molecules. Infect Immun 74:5522–5528PubMedCrossRefGoogle Scholar
  29. Gentil LG, Cordero EM, do Carmo MS, dos Santos MR, da Silveira JF (2009) Posttranscriptional mechanisms involved in the control of expression of the stage-specific GP82 surface glycoprotein in Trypanosoma cruzi. Acta Trop 109:152–158PubMedCrossRefGoogle Scholar
  30. Giordano R, Fouts D, Tewari D, Colli W, Manning JE, Ales MJM (1999) Cloning of a surface membrane glycoprotein specific for the infective form of Trypanosoma cruzi having adhesive properties to laminin. J Biol Chem 274:3461–3468PubMedCrossRefGoogle Scholar
  31. Gourlay CW, Ayscough KR (2005) The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol 6:583–589PubMedCrossRefGoogle Scholar
  32. Hoft DF, Farrar PL, Kratz-Owens SD (1996) Gastric invasion by Trypanosoma cruzi and induction of protective mucosal immune responses. Infect Immun 64:3800–3810PubMedGoogle Scholar
  33. Lan R, Lumb B, Ryan D, Reeves PR (2001) Molecular evolution of large virulence plasmid in Shigella clones and enteroinvasive E. coli. Infect Immun 69:6303–6309PubMedCrossRefGoogle Scholar
  34. Maeda FY, Alves RM, Cortez C, Lima FM, Yoshida N (2011) Characterization of the infective properties of a new genetic group of Trypanosoma cruzi associated with bats. Acta Trop 120:231–237PubMedCrossRefGoogle Scholar
  35. Maeda FY, Cortez C, Alves RM, Yoshida N (2012) Mammalian cell invasion by closely related Trypanosoma species T. dionisii and T. cruzi. Acta Trop 121:141–147PubMedCrossRefGoogle Scholar
  36. Manque PM, Eichinger D, Juliano MA, Juliano L, Araya J, Yoshida N (2000) Characterization of the cell adhesion site of Trypanosoma cruzi metacyclic stage surface glycoprotein gp82. Infect Immun 68:478–484PubMedCrossRefGoogle Scholar
  37. Marcili A, Lima L, Cavazzana M Jr, Junqueira ACV, Velduo HH, Silva FM, Campaner M, Paiva R, Nunes VLB, Teixeira MMG (2009) A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and histone H2B genes and genotyping bases on ITS1 rDNA. Parasitol 136:641–655CrossRefGoogle Scholar
  38. Marroquin-Quelopana M, Oyama S Jr, Pertinhez TA, Spisni A, Juliano MA, Juliano J, Colli W, Alves MJM (2004) Modeling the Trypanosoma cruzi Tc85-11 protein and mapping the laminin-binding site. Biochem Biophy Res Commun 325:612–618CrossRefGoogle Scholar
  39. Martins RM, Alves RM, Macedo S, Yoshida N (2011) Starvation and rapamycin differentially regulate host cell lysosome exocytosis and invasion by Trypanosoma cruzi metacyclic forms. Cell Microbiol 13:943–954Google Scholar
  40. McNulty SE, del Rosario R, Cen D, Meyskens FL Jr, Yang S (2004) Comparative expression of NF-kappaB proteins in melanocytes of normal skin vs. benign intradermal naevus and human metastatic melanoma biopsies. Pigment Cell Res 17:173–180PubMedCrossRefGoogle Scholar
  41. Neira I, Ferreira AT, Yoshida N (2002) Activation of distinct signal transduction pathways in Trypanosoma cruzi isolates with differential capacity to invade host cells. Int J Parasitol 32:405–414PubMedCrossRefGoogle Scholar
  42. Nóbrega AA, Garcia MH, Tatto E, Obara MT, Costa E, Sobel J, Araujo WN (2009) Oral transmission of Chagas disease by consumption of açaí palm fruit, Brazil. Emerg Infect Dis 15:653–655PubMedCrossRefGoogle Scholar
  43. Rajkumar R, Devaraj H, Niranjali S (1998) Binding of Shigella to rat and human intestinal mucin. Mol Cel Biochem 178:261–268CrossRefGoogle Scholar
  44. Ramirez MI, Ruiz RC, Araya JE, Franco da Silveira J, Yoshida N (1993) Involvement of the stage-specific 82-kilodalton adhesion molecule of Trypanosoma cruzi metacyclic trypomastigotes in host cell invasion. Infect Immun 61:3636–3641PubMedGoogle Scholar
  45. Ríos JF, Arboleda M, Montoya AN, Alarcón EP, Parra-Henao GJ (2011) Probable brote de transmisión oral de enfermedad de Chagas en Turbo. Antioquia Bioméd 31:185–195Google Scholar
  46. Rodriguez A, Rioult MG, Ora A, Andrews NW (1995) A trypanosome-soluble factor induces IP3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. J Cell Biol 129:1263–1273PubMedCrossRefGoogle Scholar
  47. Rodríguez A, Martinez I, Chung A, Berlot CH, Andrews NW (1999) cAMP regulates Ca2 + -dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J Biol Chem 274:16754–16759PubMedCrossRefGoogle Scholar
  48. Romano PS, Arboit MA, Vásquez CL, Colombo MI (2009) The autophagic pathway is a key component in the lysosomal dependent entry of Trypanosoma cruzi into the host cell. Autophagy 5:6–18PubMedCrossRefGoogle Scholar
  49. Ruiz RC, Favoreto S Jr, Dorta ML, Oshiro MEM, Ferreira AT, Manque PM, Yoshida N (1998) Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signaling activity. Biochem J 330:505–511PubMedGoogle Scholar
  50. Sansonetti PJ, d’Hautevite H, Echobicon C, Pourcel C (1983) Molecular comparison of virulence plasmids Shigella and enteroinvasive E. coli. Ann Microbiol 134 A:295–318Google Scholar
  51. Santori FR, Dorta ML, Juliano L, Juliano MA, da Franco Silveira J, Ruiz RC, Yoshida N (1996a) Identification of a domain of Trypanosoma cruzi metacylcic tryopomastigote surface molecule gp82 required for attachment and invasion of mammalian cells. Mol Biochem Parasitol 78:209–216PubMedCrossRefGoogle Scholar
  52. Santori FR, Paranhos-Bacalla GS, Franco da Silveira J, Yamauchi LM, Araya JE, Yoshida N (1996b) A recombinant protein based on the Trypanosoma cruzi metacyclic trypomastigotes 82-kilodalton antigen that induces an effective immune response to acute infection. Infect Immun 64:1093–1099Google Scholar
  53. Silva NN, Clausell DT, Nóbilos H, Mello AL, Ossanai J, Rapone T, Snell T (1968) Surto epidêmico de doença de Chagas com provável contaminação oral. Rev Inst Med Trop Sao Paulo 10:265–276PubMedGoogle Scholar
  54. Staquicini DI, Martins RMM, Macedo S, Sasso GRS, Atayde VD, Juliano MA, Yoshida N (2010) Role of gp82 in the selective binding to gastric mucin during infection with Trypanosoma cruzi. PLoS Negl Trop Dis 4(3):e613PubMedCrossRefGoogle Scholar
  55. Stebbins CE, Galán JE (2001) Structural mimicry in bacterial virulence. Nature 412:701–705PubMedCrossRefGoogle Scholar
  56. Steindel M, Pacheco LK, Scholl D, Soares M, Moraes MH, Eger I, Kosmann C, Sincero TCM, Stoco PH, Murta SMF, Carvalho-Pinto CJ, Grisard EC (2008) Characterization of Trypanosoma cruzi isolated from human vectors, and animal reservoirs following an outbreak of acute human Chagas disease in Santa Catarian State, Brazil. Diagn Microbiol Infect Dis 60:25–32PubMedCrossRefGoogle Scholar
  57. Tardieux I, Webster P, Ravesloot J, Boron W, Lunn JA, Heuser JE, Andrews (1992) Lysosome recruitment and fusion are early events required for Trypanosoma invasion of mammalian cells. Cell 71:1117–1130PubMedCrossRefGoogle Scholar
  58. Teixeira MMG, Yoshida N (1986) Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol 18:271–282PubMedCrossRefGoogle Scholar
  59. Tzouvelekis LS, Mentis AF, Makris AM, Spiliadis C, Blackwell C, Weir DM (1991) In vitro binding of Helicobacter pylori to human gastric mucin. Infect Immun 59:4252–4254PubMedGoogle Scholar
  60. White SR, Williams P, Wojcik KR, Sun S, Hiemstra PS, Rabe KF, Dorscheid DR (2001) Initiation of apoptosis by actin cytoskeletal derangement in human airway epithelial cells. Am J Respir Cell Mol Biol 24:282–294PubMedCrossRefGoogle Scholar
  61. Yamazaki Y, Tsuruga M, Zhou D, Fujita Y, Shang X, Dang Y, Kawasaki K, Oka S (2000) Cytoskeletal disruption accelerates caspase-3 activation and alters the intracellular membrane reorganization in DNA damage-induced apoptosis. Exp Cell Res 259:64–78PubMedCrossRefGoogle Scholar
  62. Yoshida N (1983) Surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi. Infect Immun 40:836–839PubMedGoogle Scholar
  63. Yoshida N, Araya JE, Franco da Silveira J, Giorgio S (1993) Trypanosoma cruzi: antibody production and T cell response induced by stage-specific surface glycoproteins purified from metacyclic trypomastigotes. Exp Parasitol 77:405–413PubMedCrossRefGoogle Scholar
  64. Yoshida N, Favoreto S Jr, Ferreira AT, Manque PM (2000) Signal transduction induced in Trypanosoma cruzi metacyclic trypomastigotes during the invasion of mammalian cells. Braz J Med Biol Res 33:269–278PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Cristian Cortez
    • 1
  • Tiago J. P. Sobreira
    • 2
  • Fernando Y. Maeda
    • 1
  • Nobuko Yoshida
    • 1
  1. 1.Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de MedicinaUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Laboratório Nacional de BiociênciasCentro Nacional de Pesquisa em Energia e MateriaisCampinasBrazil

Personalised recommendations