Skip to main content

Diffusion-Weighted Imaging Analysis

  • Chapter
  • First Online:
Functional Magnetic Resonance Imaging Processing
  • 2809 Accesses

Abstract

In this chapter, we present methods to analyze three types of diffusion-weighted imaging (DWI), i.e., diffusion tensor imaging (DTI), Q-ball imaging (QBI), and diffusion spectrum imaging (DSI). DWI is one of the methods to measure water diffusion in tissues. It provides unique biologically and clinically relevant information that is not available from other imaging modalities. Because of its noninvasive nature, DWI has been applied widely in many studies, including but not limited to fiber tracts in cerebral cortex. We will begin with the physical background of diffusion MRI (dMRI), and then we will present method to compute the apparent diffusion coefficient (ADC) map and the eigenvalues for DTI study. After that, we introduce the measures for the water diffusion anisotropy and give one example fiber tractography method using DTI.

However, DTI method cannot resolve the crossing fiber issue; to overcome this limitation, Q-ball imaging (QBI) and diffusion spectrum imaging (DSI) with high angular resolution diffusion imaging (HARDI) acquisition have been proposed. QBI has the advantage of model-free and can reconstruct water diffusion orientation distribution function (ODF) from single-shell HARDI acquisition with relative small b value. To analyze QBI dataset, we introduce the concept of water molecule diffusion probability distribution function (PDF) and its relationship with ODF. Next, we show how to compute ODF from QBI using spherical harmonic approximation. Finally, we present generalized cross-validation (GCV) algorithm to regularize ODF for QBI analysis.

Although it takes longer time to acquire hundreds of DWI images for diffusion spectrum imaging (DSI) study, due to its high accuracy, DSI becomes more and more popular for studying fiber tracking and water diffusion in tissue. Like QBI, it is a model-free method and ODF can be estimated using 3D Fourier transformation method. Unlike QBI, DSI employs more than one b value/factor for data acquisition, while single-shell QBI adopts only one b factor. We briefly compare DSI with QBI, and then we apply fixed regularization parameter method and GCV regularization method for DSI ODF reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Bihan D et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546

    Article  PubMed  Google Scholar 

  2. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    Article  PubMed  CAS  Google Scholar 

  3. Jensen JH et al (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440

    Article  PubMed  Google Scholar 

  4. Assemlal H-E et al (2011) Recent advances in diffusion MRI modeling: angular and radial reconstruction. Med Image Anal 15(4):369–396

    Article  PubMed  Google Scholar 

  5. Tuch DS (2004) Q-ball imaging. Magn Reson Med 52(6):1358–1372

    Article  PubMed  Google Scholar 

  6. Wedeen VJ et al (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54(6):1377–1386

    Article  PubMed  Google Scholar 

  7. Hagmann P et al (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(suppl 1):S205–S223

    Article  PubMed  Google Scholar 

  8. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford

    Google Scholar 

  9. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292

    Article  CAS  Google Scholar 

  10. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15(7–8):456–467

    Article  PubMed  Google Scholar 

  11. Özarslan E, Mareci TH (2003) Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn Reson Med 50(5):955–965

    Article  PubMed  Google Scholar 

  12. Liu C et al (2004) Characterizing non-Gaussian diffusion by using generalized diffusion tensors. Magn Reson Med 51(5):924–937

    Article  PubMed  Google Scholar 

  13. Parker GJM, Wheeler-Kingshott CAM, Barker GJ (2002) Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans Med Imaging 21(5):505–512

    Article  PubMed  Google Scholar 

  14. Lazar M, Alexander AL (2005) Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24(2):524–532

    Article  PubMed  Google Scholar 

  15. Poupon C, Mangin J-F, Clark CA, Frouin V, Regis J, LeBihan D, Bloch I (2001) Towards inference of human brain connectivity from MR diffusion tensor data. Med Image Anal 5:1–15

    Article  PubMed  CAS  Google Scholar 

  16. Mori S, van Zijl PCM (2002) Fiber tracking: principles and strategies – a technical review. NMR Biomed 15(7–8):468–480

    Article  PubMed  Google Scholar 

  17. Özarslan E et al (2006) Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31(3):1086–1103

    Article  PubMed  Google Scholar 

  18. Hess CP et al (2006) Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn Reson Med 56(1):104–117

    Article  PubMed  Google Scholar 

  19. Frank LR (2002) Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 47(6):1083–1099

    Article  PubMed  Google Scholar 

  20. Alexander DC, Barker GJ, Arridge SR (2002) Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med 48(2):331–340

    Article  PubMed  CAS  Google Scholar 

  21. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  22. Descoteaux M et al (2007) Regularized, fast, and robust analytical Q-ball imaging. Magn Reson Med 58(3):497–510

    Article  PubMed  Google Scholar 

  23. Dell’Acqua F et al (2010) A modified damped Richardson Lucy algorithm to reduce isotropic background effects in spherical deconvolution. NeuroImage 49(2):1446–1458

    Article  PubMed  Google Scholar 

  24. Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4):1459–1472

    Article  PubMed  Google Scholar 

  25. Tikhonov AN (1963) Regularization of incorrectly posed problems. Soviet Math 153:1624–1627

    Google Scholar 

  26. Gander W (1980) Least squares with a quadratic constraint. Numerische Mathematik 36(3):291–307

    Article  Google Scholar 

  27. Björck Å (1996) Numerical methods for least squares problems. SIAM, Philadelphia

    Book  Google Scholar 

  28. Calvetti D et al (2000) Tikhonov regularization and the L-curve for large discrete ill-posed problems. J Comput Appl Math 123(1–2):423–446

    Article  Google Scholar 

  29. Assemlal HE, Tschumperle D, Brun L (2007) Fiber tracking on HARDI data using Robust ODF fields. In: IEEE international conference on image processing, ICIP, San Antonio, 2007

    Google Scholar 

  30. Campbell JSW et al (2005) Flow-based fiber tracking with diffusion tensor and q-ball data: validation and comparison to principal diffusion direction techniques. NeuroImage 27(4):725–736

    Article  PubMed  Google Scholar 

  31. Tournier JD et al (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3):1176–1185

    Article  PubMed  Google Scholar 

  32. Reiss PT, Todd Ogden R (2009) Smoothing parameter selection for a class of semiparametric linear models. J R Stat Soc Ser B (Stat Methodol) 71(2):505–523

    Article  Google Scholar 

  33. Golub G, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223

    Article  Google Scholar 

  34. Hansen PC, O’Leary DP (1993) The use of the L-curve in the regularization of discrete Ill-posed problems. SIAM J Sci Comput 14(6):1487–1503

    Article  Google Scholar 

  35. Kelley CT (ed) (1999) Iterative methods for optimization. SIAM, Philadelphia

    Google Scholar 

  36. Nocedal J, Wright S (2006) Numerical optimization, Springer series in operations research and financial engineering. Springer, New York

    Google Scholar 

  37. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441

    Article  Google Scholar 

  38. Ipsen ICF, Kelley CT, Pope SR (2011) Rank-deficient nonlinear least squares problems and subset selection. SIAM J Numer Anal 49:1244–1266

    Article  Google Scholar 

  39. Craven P, Wahba G (1978) Smoothing noisy data with spline functions. Numerische Mathematik 31(4):377–403

    Article  Google Scholar 

  40. Wedeen VJ et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41(4):1267–1277

    Article  PubMed  CAS  Google Scholar 

  41. Descoteaux M et al (2011) Multiple q-shell diffusion propagator imaging. Med Image Anal 15(4):603–621

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, X. (2014). Diffusion-Weighted Imaging Analysis. In: Functional Magnetic Resonance Imaging Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7302-8_5

Download citation

Publish with us

Policies and ethics