Skip to main content

Students’ Experienced Coherence Between Chemistry and Biology in Context-Based Secondary Science Education

  • Chapter
  • First Online:
Topics and Trends in Current Science Education

Part of the book series: Contributions from Science Education Research ((CFSE,volume 1))

  • 2173 Accesses

Abstract

In current biology and chemistry secondary school practice, coherence between the subjects chemistry and biology is underexposed or even ignored. This is incongruent with the current scientific practice, in which the emphasis is shifting towards inter- and multidisciplinarity. These problems have been addressed by the development of a curriculum unit based on an authentic practice involving the eradication of Legionella pneumophila by means of copper-silver ionization. The unit operationalizes coherence between chemistry and biology in two ways, by connecting the macro-micro thinking in chemistry with the thinking in terms of levels of organization in biology and by emphasizing relations between chemical and biological concepts. The unit is developed by a design research approach. A scenario consisting of a detailed description of the intended learning and teaching process was used as a frame of reference for measuring students’ experienced coherence. The unit has been enacted at three secondary schools in the Netherlands. The results show that upper secondary, preuniversity students (grade 11, age 16–17) develop an understanding of the coherence between the domains chemistry and biology and that they are able to explicate this coherence within different interdisciplinary contexts. The developed LT strategy, based on a synthesis of macro-micro and level-of-organization thinking, proved to be successful in establishing coherence from a students’ perspective in context-based science education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bardeen, M. G., & Lederman, L. M. (1998). Coherence in science education. Science, 281(5374), 178–179. doi:10.1126/science.281.5374.178.

    Article  Google Scholar 

  • Boersma, K. T., van Graft, M., Harteveld, A., Hullu, E., de Knecht-van Eeckelen, A., Mazereeuw, M., et al. (2005). Vernieuwd biologieonderwijs van 4 tot 18 jaar [New biology education from 4 to 18 years old]. Utrecht: CVBO.

    Google Scholar 

  • Boersma, K. T., van Graft, M., Harteveld, A., Hullu, E., de Knecht-van Eeckelen, A., Mazereeuw, M., et al. (2007). Leerlijn biologie van 4 tot 18 jaar vanuit de concept-contextbenadering [Biology curriculum for ages 4 to 18 based on the concept-context approach]. Utrecht: CVBO.

    Google Scholar 

  • Boersma, K. T., & Waarlo, A. J. (2009). On the theoretical in- and output of ‘design research’ in biology education. In M. Hammann, K. T. Boersma, & A. J. Waarlo (Eds.), The nature of research in biological education: Old and new perspectives on theoretical and methodological issues. Utrecht: FIsme-Press.

    Google Scholar 

  • Bulte, A. M. W., Westbroek, H. B., De Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063–1086. doi:10.1080/09500690600702520.

    Article  Google Scholar 

  • Cañas, A. J., Valerio, A., Lalinde-Pulido, J., Carvalho, M., & Arguedas, M. (2003). Using WordNet for word sense disambiguation to support concept map construction. In M. A. Nascimento, E. S. de Moura, & A. L. Oliveira (Eds.), String processing and information retrieval. 10th international symposium, SPIRE 2003, Manaus, 8–10 Oct, 2003. Proceedings. Berlin/Heidelberg: Springer

    Google Scholar 

  • Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit.

    Google Scholar 

  • Geraedts, C., Boersma, K. T., & Eijkelhof, H. M. C. (2006). Towards coherent science and technology education. Journal of Curriculum Studies, 38(3), 307–325. doi:10.1080/00220270500391589.

    Article  Google Scholar 

  • Gilbert, J. K. (2006). On the nature of ‘context’ in chemical education. International Journal of Science Education, 28(9), 957–976. doi:10.1080/09500690600702470.

    Article  Google Scholar 

  • Johnson, D. K., & Ratcliff, J. L. (2004). Creating coherence: The unfinished agenda. New Directions Higher Education, 125, 85–95. doi:10.1002/he.141.

    Article  Google Scholar 

  • Klaassen, C. W. J. M. (1995). A problem-posing approach to teaching the topic of radioactivity. Dissertation, University of Utrecht (CD-β series Vol. 18). CD- β Press, Utrecht.

    Google Scholar 

  • Knippels, M. C. P. J., Waarlo, A. J., & Boersma, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 108–112. doi:10.1080/00219266.2005.9655976.

    Article  Google Scholar 

  • Lave, J. (1988). Cognition in practice. Cambridge: University Press.

    Book  Google Scholar 

  • Lijnse, P. L. (1995). ‘Developmental research’ as a way to an empirically based didactical structure of science. Science Education, 79, 189–199. doi:10.1002/sce.3730790205.

    Article  Google Scholar 

  • Lijnse, P. L. (2005). Reflections on a problem-posing approach. In K. T. Boersma, M. Goedhart, O. De Jong, & H. M. C. Eijkelhof (Eds.), Research and the quality of science education. Dordrecht: Springer.

    Google Scholar 

  • Lijnse, P. L., & Klaassen, C. W. J. M. (2004). Didactical structures as an outcome of research on teaching-learning sequences? International Journal of Science Education, 26, 537–554. doi:10.1080/09500690310001614753.

    Article  Google Scholar 

  • Novak, J. D., & Cañas, A. J. (2007). Theoretical origins of concept maps: How to construct them, and uses in education. Reflecting Education, 3(1), 29–42.

    Google Scholar 

  • Ogborn, J. (2005). 40 years of curriculum development. In K. T. Boersma, M. Goedhart, O. De Jong, & H. C. M. Eijkelhof (Eds.), Research and the quality of science education. Dordrecht: Springer.

    Google Scholar 

  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. London: The Nuffield Foundation.

    Google Scholar 

  • Osborne, J., & Collins, J. (2001). Pupils’ views of the role and value of the science curriculum: A focus-group study. International Journal of Science Education, 23(5), 441–467. doi:10.1080/09500690010006518.

    Article  Google Scholar 

  • Prins, G. T., Bulte, A. M. W., Van Driel, J. H., & Pilot, A. (2008). Selection of authentic modelling practices as contexts for chemistry education. International Journal of Science Education, 30(14), 1867–1890. doi:10.1080/09500690701581823.

    Article  Google Scholar 

  • Rudduck, J., Harris, S., & Wallace, G. (1994). ‘Coherence’ and students’ experience of learning in the secondary school. Cambridge Journal of Education, 24, 197–204.

    Article  Google Scholar 

  • Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: An examination of US mathematics and science content standards from an international perspective. Journal of Curriculum Studies, 37(5), 525–559. doi:10.1080/0022027042000294682.

    Article  Google Scholar 

  • Van Aalsvoort, J. (2004). Activity theory as a tool to address the problem of chemistry’s lack of relevance in secondary school education. International Journal of Science Education, 26(13), 1635–1651. doi:10.1080/0950069042000205378.

    Article  Google Scholar 

  • Van den Akker, J. J. H., Gravemeijer, K. P. E., McKenny, S., & Nieveen, N. (2006). Introducing educational design research. In J. J. H. Van den Akker, K. P. E. Gravemeijer, S. McKenny, & N. Nieveen (Eds.), Educational design research. London/New York: Routledge.

    Google Scholar 

  • Venville, G. J., Wallace, J., Rennie, L. J., & Malone, J. A. (2002). Curriculum integration: Eroding the high ground of science as a school subject? St Science Education, 37, 43–84. doi:10.1080/03057260208560177.

    Article  Google Scholar 

  • Verhoeff, R. P., Waarlo, A. J., & Boersma, K. T. (2008). Systems modelling and the development of coherent understanding of cell biology. International Journal of Science Education, 30, 543–568. doi:10.1080/09500690701237780.

    Article  Google Scholar 

  • Westbroek, H. B. (2005). Characteristics of meaningful chemistry education: The case of water quality. Dissertation, University of Utrecht. CD-ß Press, Utrecht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilde J. Boer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boer, H.J., Prins, G.T., Goedhart, M.J., Boersma, K.T. (2014). Students’ Experienced Coherence Between Chemistry and Biology in Context-Based Secondary Science Education. In: Bruguière, C., Tiberghien, A., Clément, P. (eds) Topics and Trends in Current Science Education. Contributions from Science Education Research, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7281-6_24

Download citation

Publish with us

Policies and ethics