Measuring Chemistry Teachers’ Content Knowledge: Is It Correlated to Pedagogical Content Knowledge?

  • Oliver Tepner
  • Sabrina Dollny
Part of the Contributions from Science Education Research book series (CFSE, volume 1)


Although the construct of professional knowledge has been gained in the center stage of educational research, content knowledge as one of the main aspects is only marginally handled. While in many studies teachers’ content knowledge and its relation to other teacher characteristics are not based on a direct measurement, a large-scale test instrument for quantifying chemistry teachers’ content knowledge has been developed. The development of test items in a multiple-choice single-select format was based on a theoretical model which considers different types of knowledge, different topics, and curricular classifications. Besides evaluation of content knowledge, a scale for describing teachers’ pedagogical content knowledge was used and background information was collected. This study’s sample includes 166 teachers of different school types (basic general education, extensive general education, intensified general education, and comprehensive school) which show significant differences both in content knowledge and in pedagogical content knowledge. This procedure allows for revealing aspects influencing teachers’ content knowledge and information about the correlation between content knowledge and pedagogical content knowledge. Furthermore presented results serve as a basis for discussion on teacher’s content knowledge needed in school.


Content Knowledge Pedagogical Content Knowledge General Education Professional Knowledge Pedagogical Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abell, S. K. (2007). Research on science teachers’ knowledge. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1105–1149). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  2. Ball, D. L., Hill, H. H., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14, 16–17, 20–22, 43–46. Retrieved from
  3. Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9(4), 469–520.CrossRefGoogle Scholar
  4. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., & Tsai, Y. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180.CrossRefGoogle Scholar
  5. Baxter, J. A., & Lederman, N. G. (1999). Assessment and measurement of pedagogical content knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 147–161). Dordrecht: Kluwer Academic.Google Scholar
  6. Blömeke, S., Seeber, S., Lehmann, R., Kaiser, G., Schwarz, B., Felbrich, A., & Müller, C. (2008). Messung des fachbezogenen Wissens angehender Mathematiklehrkräfte. In S. Blömeke, G. Kaiser, & R. Lehmann (Eds.), Professionelle Kompetenz angehender Lehrerinnen und Lehrer. Wissen, Überzeugungen und Lerngelegenheiten deutscher Mathematikstudierender und -referendare (pp. 49–88). Münster: Waxmann.Google Scholar
  7. Blömeke, S., Kaiser, G., Lehmann, R., König, J., Döhrmann, M., Buchholtz, C., & Hacke, S. (2009). TEDS-M: Messung von Lehrerkompetenzen im internationalen Vergleich. In O. Zlatkin-Troitschanskaia, K. Beck, D. Sembill, R. Nickolaus, & R. Mulder (Eds.), Lehrprofessionalität. Bedingungen, Genese, Wirkungen und ihre Messung (pp. 181–210). Weinheim: Beltz.Google Scholar
  8. Bonsen, M., Bos, W., & Frey, K. A. (2008). Germany. In I. V. S. Mullis, M. O. Martin, J. F. Olson, D. R. Berger, D. Milne, & G. M. Stanco (Eds.), TIMSS 2007 encyclopedia. A guide to mathematics and science education around the world. Volume I (pp. 203–216). Chestnut Hill: TIMSS & PIRLS International Study Center Boston College.Google Scholar
  9. Borowski, A., Neuhaus, B. J., Tepner, O., Wirth, J., Fischer, H. E., Leutner, D., Sandmann, A., & Sumfleth, E. (2010). Professionswissen von Lehrkräften in den Naturwissenschaften (ProwiN) – Kurzdarstellung des BMBF-Projekts. Zeitschrift für Didaktik der Naturwissenschaften, 16, 341–349.Google Scholar
  10. Bransford, J. D., & Darling-Hammond, L. (2005). Introduction. In L. Darling-Hammond & J. D. Bransford (Eds.), Preparing teachers for a changing world. What teachers should learn and be able to do (pp. 1–39). San Francisco: Jossey-Bass.Google Scholar
  11. Cochran, K. F., & Jones, L. L. (1998). The subject matter knowledge of preservice science teachers. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education. Part two (pp. 707–718). London: Kluwer Academic.CrossRefGoogle Scholar
  12. de Jong, O., & van Driel, J. (2004). Exploring the development of student teachers’ PCK of the multiple meanings of chemistry topics. International Journal of Science and Mathematics Education, 2(4), 477–491. doi: 10.1007/s10763-004-4197-x.CrossRefGoogle Scholar
  13. Demir, A., & Abell, S. K. (2010). Views of inquiry: Mismatches between views of science education faculty and students of an alternative certification program. Journal of Research in Science Teaching, 47(6), 716–741.CrossRefGoogle Scholar
  14. Department of Education. (2010). The importance of teaching. The schools white paper 2010. London: The Stationery Office.Google Scholar
  15. Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688.CrossRefGoogle Scholar
  16. Grossman, P. L. (1990). The making of a teacher. Teacher knowledge and teacher education (Professional development and practice series). New York: Teachers College Press.Google Scholar
  17. Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers’ mathematics knowledge for teaching. Elementary School Journal, 105(1), 11–30.CrossRefGoogle Scholar
  18. Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88, 28–54.CrossRefGoogle Scholar
  19. Jüttner, M., & Neuhaus, B. J. (2012). Development of items for a pedagogical content knowledge test based on empirical analysis of pupils’ errors. International Journal of Science Education, 34(7), 1125–1143.CrossRefGoogle Scholar
  20. Khourey-Bowers, C., & Fenk, C. (2009). Influence of constructivist professional development on chemistry content knowledge and scientific model development. Journal of Science Teacher Education, 20, 437–457.CrossRefGoogle Scholar
  21. Kind, V. (2009). Pedagogical content knowledge in science education: Perspectives and potential for progress. Studies in Science Education, 45(2), 169–204.CrossRefGoogle Scholar
  22. Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725.CrossRefGoogle Scholar
  23. Krauss, S., Blum, W., Brunner, M., Neubrand, M., Baumert, J., Kunter, M., Besser, M., & Elsner, J. (2011). Konzeptualisierung und Testkonstruktion zum fachbezogenen Professionswissen von Mathematiklehrkräften. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV (pp. 135–161). Münster: Waxmann.Google Scholar
  24. Kunter, M., Klusmann, U., & Baumert, J. (2009). Professionelle Kompetenz von Mathematiklehrkräften: Das COACTIV-Modell. In O. Zlatkin-Troitschanskaia, K. Beck, D. Sembill, R. Nickolaus, & R. Mulder (Eds.), Lehrprofessionalität. Bedingungen, Genese, Wirkungen und ihreMessung (pp. 153–165). Weinheim: Beltz.Google Scholar
  25. Loucks-Horsley, S., & Matsumoto, C. (1999). Research on professional development for teachers of mathematics and science: The state of the scene. School Science and Mathematics, 99(5), 258–271.CrossRefGoogle Scholar
  26. Marks, R. (1990). Pedagogical content knowledge: From a mathematical case to a modified conception. Journal of Teacher Education, 41(3), 3–11.CrossRefGoogle Scholar
  27. Nakhleh, M. (1992). Why some students don’t learn chemistry. Chemical misconceptions. Journal of Chemical Education, 69(3), 191–196.CrossRefGoogle Scholar
  28. National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel, Washington, DC.Google Scholar
  29. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109–1130. doi:10.1080/09500693.2010.502191.CrossRefGoogle Scholar
  30. Paris, S. G., Lipson, M. Y., & Wixson, K. K. (1983). Becoming a strategic reader. Contemporary Educational Psychology, 8, 293–316.CrossRefGoogle Scholar
  31. Park, S., & Oliver, S. J. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284.CrossRefGoogle Scholar
  32. Peterson, P. L., Carpenter, T. P., & Fennema, E. (1989). Teachers’ knowledge of students’ knowledge in mathematics problem solving: Correlating and case analysis. Journal of Educational Psychology, 81(4), 558–569.CrossRefGoogle Scholar
  33. Riese, J., & Reinhold, P. (2008). Entwicklung und Validierung eines Instruments zur Messung professioneller Handlungskompetenz bei (angehenden) Physiklehrkräften. Lehrerbildung auf dem Prüfstand, 1(2), 625–640.Google Scholar
  34. Riese, J., & Reinhold, P. (2009). Fachbezogene Kompetenzmessung und Kompetenzentwicklung bei Lehramtsstudierenden der Physik im Vergleich verschiedener Studiengänge. Lehrerbildung auf demPrüfstand, 2(1), 104–125.Google Scholar
  35. Riese, J., & Reinhold, P. (2009b). Structure and development of physics student teachers’ professional action competence. In: NARST (Ed.), Grand challenges and great opportunities in science education. Proceedings of the NARST 2009 Annual Meeting, Garden Grove.Google Scholar
  36. Riese, J., & Reinhold, P. (2010). Empirische Erkenntnisse zur Struktur professioneller Handlungskompetenz von angehenden Physiklehrkräften. Zeitschrift für Didaktik der Naturwissenschaften, 16, 167–187.Google Scholar
  37. Rollnick, M., Bennett, J., Rhemtula, M., Dharsey, N., & Ndlovu, T. (2008). The Place of subject matter knowledge in pedagogical content knowledge: A case study of South African teachers teaching the amount of substance and chemical equilibrium. International Journal of Science Education, 30(10), 1365–1387.CrossRefGoogle Scholar
  38. Rowan, B., Chiang, F., & Miller, R. J. (1997). Using research on employees’ performance to study the effects of teachers on students’ achievement. Sociology of Education, 70(4), 256–284.CrossRefGoogle Scholar
  39. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  40. Shulman, L. S. (1987). Knowledge and teaching of the new reform. Harvard Educational Review, 57, 1–22.Google Scholar
  41. Smith, D. C., & Neale, D. C. (1989). The construction of subject matter knowledge in primary science teaching. Teaching and Teacher Education, 5(1), 1–20.CrossRefGoogle Scholar
  42. Tamir, P. (1988). Subject matter and related pedagogical knowledge in teacher education. Teaching and Teacher Education, 4(2), 99–110.CrossRefGoogle Scholar
  43. Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher Education and Development Study in Mathematics (TEDS-M): Conceptual framework. Teacher Education and Development International Study Center, College of Education, Michigan State University, East Lansing.Google Scholar
  44. Tepner, O., Borowski, A., Dollny, S., Fischer, H. E., Jüttner, M., Kirschner, S., Leutner, D., Neuhaus, B. J., Sandmann, A., Sumfleth, E., Thillmann, H., & Wirth, J. (2012). Modell zur Entwicklung von Testitems zur Erfassung des Professionswissens von Lehrkräften in den Naturwissenschaften. Zeitschrift für Didaktik der Naturwissenschaften, 18, 7–28.Google Scholar
  45. Thillmann, H. (2008). Selbstreguliertes lernen durch experimentieren: Von der Erfassung zur Förderung. Dissertation, Universität Duisburg-Essen.Google Scholar
  46. van Driel, J., & Verloop, N. (1999). Teachers’ knowledge of models an modeling in science. International Journal of Science Education, 21, 1141–1153.CrossRefGoogle Scholar
  47. van Driel, J., Verloop, N., & de Vos, W. (1998). Developing science teachers’ pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673–695.CrossRefGoogle Scholar
  48. Wahser, I. (2008). Training von naturwissenschaftlichen Arbeitsweisen zur Unterstützung experimenteller Kleingruppenarbeit im Fach Chemie. Studien zum Physik- und Chemielernen, vol 72. Berlin: Logos.Google Scholar
  49. Walpuski, M., Tepner, O., Sumfleth, E., Dollny, S., Hostenbach, J., & Pollender, T. (2012). Multiple perspectives on students’ scientific communication & reasoning in chemistry education: VISIONS 2011: Teaching. ActaDidacticaNorge, 6(1). Retrieved from

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Chemistry EducationUniversity of RegensburgRegensburgGermany
  2. 2.Vestisches Gymnasium KirchhellenBottropGermany

Personalised recommendations