Skip to main content

Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects

  • Chapter
  • First Online:
Book cover Tsunami Events and Lessons Learned

Abstract

This paper presents an integrated probabilistic framework that deals with the industrial accidents and domino effects that may occur in an industrial plant. The particular case of tsunamis is detailed in the present paper: simplified models for the inundations depths and run-ups as well as their mechanical effects on industrial tanks.

The initial accident may be caused by severe service conditions in any of the tanks either under or at atmospheric pressure, or triggered by a natural hazard such as earthquake, tsunami or extreme floods for instance. This initial event generates, in general, a set of structural fragments, a fire ball, a blast wave as well as critical losses of containment (liquid and gas release and loss). The surrounding facilities may suffer serious damages and may also be a new source of accident and explosion generating afterwards a new sequence of structural fragments, fire ball, blast wave and confinement loss. The structural fragments, the blast wave form and the features of the fire ball can be described following database and feedback collected from past accidents.

The surrounding tanks might be under or at atmospheric pressure, and might be buried or not, or protected by physical barriers such as walls. The vulnerability of the potential targets should therefore be investigated in order to assess the risk of propagation of the accidents since cascading sequences of accidents, explosions and fires may take place within the industrial plant, giving rise to the domino effect that threatens any industrial plant.

The present research describes the risk of domino effect occurrence. The methodology is developed so that it can be operational and valid for any industrial site. It is supposed to be valid for a set of sizes, forms and kinds of tanks as well as a given geometric disposal on the industrial site. The interaction and the behavior of the targets affected or impacted by the first explosion effects should be described thanks to adequate simplified or sophisticated mechanical models: perforation and penetration of metal fragments when they impact surrounding tanks, as well as global failure such as overturning, buckling, excessive bending or shear effects, etc. The vulnerability analysis is detailed for the case of tanks under the mechanical effects generated by tsunamis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Abbasi SA (2007) The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J Hazard Mater 141:489–519

    Article  Google Scholar 

  • Abe K (1993) Estimate of tsunami heights from earthquake magnitudes. In: Proceedings of the IUGG/IOC international tsunami symposium TSUNAMI’93, Wakayama

    Google Scholar 

  • Abe K (1995) Modeling of the runup heights of the hokkaido-nansei-Oki tsunami of 12 July 1993. Pure Appl Geophys 144(3/4):113–124

    Google Scholar 

  • Ali SY, Li QM (2008) Critical impact energy for the perforation of metallic plates. Nucl Eng Des 238:2521–2528

    Article  Google Scholar 

  • Antonioni G, Spadoni G, Cozzani V (2009) Application of domino effect quantitative risk assessment to an extended industrial area. J Loss Prev Process Ind 22:614–624

    Article  Google Scholar 

  • ARIA base of BARPI, France. www.aria.environnement.gouv.fr

  • ASCE (2010) Minimum design loads for buildings and other structures, ASCE/SEI standard. American Society of Civil Engineers, Reston, pp 7–10

    Google Scholar 

  • Askan A, Yucemen MS (2010) Probabilistic methods for the estimation of potential seismic damage: application to reinforced concrete buildings in Turkey. Struct Saf 32:262–271, Elsevier

    Article  Google Scholar 

  • ATC (2008) Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, FEMA P646. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency, FEMA and the National Oceanic and Atmospheric Administration, NOAA.: 158 p

    Google Scholar 

  • ATC (2011) Coastal Construction Manual, FEMA P-55. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency FEMA. II: 400 p

    Google Scholar 

  • Batdorf SB (1974) A simplified method of elastic-stability analysis for thin cylindrical shells. NACA report – 874: 25 p

    Google Scholar 

  • Beltrami GM, Di Risio M (2011) Algorithms for automatic, real-time tsunami detection in wind-wave measurements. Part I: implementation strategies and basic tests. Coast Eng 58:1062–1071, Elsevier

    Article  Google Scholar 

  • Børvik T, Hooperstad OS, Langseth M, Malo KA (2003) Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. Int J Impact Eng 28:413–464

    Article  Google Scholar 

  • Burwell D, Tolkova E, Chawla A (2007) Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model 19:10–30, Elsevier

    Article  Google Scholar 

  • CCH (2000) City and county of Honolulu building code. Department of Planning and Permitting of Honolulu Hawaii, Honolulu

    Google Scholar 

  • CEN (2007) EN 1993-1-6 eurocode 3: design of steel structures, part 1.6: strength and stability of shell structures. CEN, Brussels

    Google Scholar 

  • Chen L, Rotter M (2012) Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct 41:199–208

    Article  Google Scholar 

  • Cheung KF, Wei Y, Yamazaki Y, Yim SCS (2011) Modeling of 500-year tsunamis for probabilistic design of coastal infrastructures in the pacific northwest. Coast Eng 58:970–985, Elsevier

    Article  Google Scholar 

  • Constantin A (2009) On the relevance of soliton theory to tsunami modelling. Wave Motion 46:420–426, Elsevier

    Article  Google Scholar 

  • Corbet GG, Reid SR, Johnson W (1995) Impact loading of plates and shells by free flying projectiles: a review. J Impact Eng 18:141–230, 0734-743X(95)00023-2

    Article  Google Scholar 

  • Cozzani V, Salzano E (2004) The quantitative assessment of domino effects caused by overpressure- Part I: probit models. J Hazard Mater A107:67–80

    Article  Google Scholar 

  • Demetracopoulos AC, Hadjitheodorou C, Antonopoulos JA (1994) Statistical and numerical analysis of tsunami wave heights in confined waters. Ocean Eng 21(7):629–643, Pergamon

    Article  Google Scholar 

  • Eckert S, Jelinek R, Zeug G, Krausmann E (2012) Remote sensing-based assessment of tsunami vulnerability and risk in Alexandria, Egypt. Appl Geogr 32:714–723, Elsevier

    Article  Google Scholar 

  • Federal Emergency Management Agency, FEMA, USA. http://www.fema.gov/photolibrary/photo_details.do?id=42405

  • Flouri ET, Kalligeris N, Alexandrakis G, Kampanis NA, Synolakis CE (2011) Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Appl Numer Math 67:111–125. doi:10.1016/j.apnum.2011.06.003, Elsevier

    Article  Google Scholar 

  • GEBCO (2012) General Bathymetric Chart of the Oceans. Retrieved 15 June 2012, from www.gebco.net

  • Godoy LA (2007) Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. J Perform Constructed Facil 21(6):441–449

    Article  Google Scholar 

  • Goto Y (2008) Tsunami damage to oil storage tanks. In: The 14 World Conference on Earthquake Engineering, Beijing

    Google Scholar 

  • Goto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, Witter RC, Yulianto E (2011) New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol 290:46–50, Elsevier

    Article  Google Scholar 

  • Grasso VF, Singh A (2008) Global environmental alert service (GEAS). Adv Space Res 41:1836–1852, Elsevier

    Article  Google Scholar 

  • Haugen KB, Lovholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Metroleum Geol 22:209–217, Elsevier

    Article  Google Scholar 

  • Heidarzadeh M, Pirooz MD, Zaker NH (2009) Modeling of the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng 36:368–376, Elsevier

    Article  Google Scholar 

  • Helal MA, Mehanna MS (2008) Tsunamis from nature to physics. Chaos Solitons Fractals 36:787–796, Elsevier

    Article  Google Scholar 

  • Holden PL (1988) Assessment of missile hazards: review of incident experience relevant to major hazard plant. Safety and reliability directorate, Health & Safety Directorate

    Google Scholar 

  • INERIS (2011) (in French) Note de caractérisation du comportement des équipements industriels à l’inondation. Rapport d'étude DRA-. Adrien Willot et Agnès Vallée, Institut National de l'Environnement Industriel et des Risques

    Google Scholar 

  • Jin D, Lin J (2011) Managing tsunamis through early warning systems: a multidisciplinary approach. Ocean Coast Manag 54:189–199, Elsevier

    Article  Google Scholar 

  • Kharif C, Pelinovsky E (2005) Asteroids impact tsunamis. Physique 6:361–366

    Article  Google Scholar 

  • Koshimura S, Namegaya Y et al (2009) Tsunami fragility – a New measure to identify tsunami damage. J Disaster Res 4(6):479–490

    Google Scholar 

  • Lees FP (2005) Loss prevention in the process industries, 3rd edn. Butterwort Heinemann, Oxford

    Google Scholar 

  • Leone F, Lavigne F, Paris R, Denain JC, Vinet F (2011) A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr 31:363–375, Elsevier

    Article  Google Scholar 

  • Liu PLF, Wang X, Salisbury AJ (2009) Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci 36:2–12, Elsevier

    Article  Google Scholar 

  • Lovholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H (2011) Tsunami hazard and exposure on the global scale. Earth-Sci Rev, Elsevier. doi:10.1016/j.earscirev.2011.10.002

    Google Scholar 

  • Lukkunaprasit P, Thanasisathit N et al (2009) Experimental verification of FEMA P646 tsunami loading. J Disaster Res 4(6):410–418

    Google Scholar 

  • Madsen PA (2010) On the evolution and run-up of tsunamis. J Hydrodyn 22:1–6. doi:10.1016/S1001-6058(09)60160-8, Elsevier

    Article  Google Scholar 

  • Marhavilas PK, Koulouriotis D, Gemeni V (2011) Risk analysis and assessment methodologies in the work sites : on a review, classification and comparative study of the scientific literature of the period 2000–2009. J Loss Prev Process Industries 24(5):477–523

    Article  Google Scholar 

  • Mebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2007) A probabilistic model for the vulnerability of metal plates under the impact of cylindrical projectiles. J Loss Prev Process Industries 20:128–134

    Article  Google Scholar 

  • Mebarki A, Genatios C, Lafuente M (2008a) Risques Naturels et Technologiques : Aléas, Vulnérabilité et Fiabilité des Constructions – vers une formulation probabiliste intégrée. Presses Ponts et Chaussées, Paris, ISBN 978-2-85978-436-2

    Google Scholar 

  • Mebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2008b) Reliability analysis of metallic targets under metallic rods impact: towards a simplified probabilistic approach. J Loss Prev Process Industries 21:518–527

    Article  Google Scholar 

  • Mebarki A, Mercier F, Nguyen QB, Ami Saada R (2009a) Structural fragments and explosions in industrial facilities. Part I: probabilistic description of the source terms. J Loss Prev Process Industries 22(4):408–416. doi:10.1016/j.jlp.2009.02.006

    Article  Google Scholar 

  • Mebarki A, Mercier F, Nguyen QB, Ami Saada R (2009b) Structural fragments and explosions in industrial facilities. Part II: projectile trajectory and probability of impact. J Loss Prev Process Industries 22(4):417–425, 10.1016/j.jlp.2009.02.005

    Article  Google Scholar 

  • Mebarki A (2009) A comparative study of different PGA attenuation and error models: case of 1999 Chi-Chi earthquake. Tectonophysics 466:300–306

    Article  Google Scholar 

  • Mingguang Z, Juncheng J (2008) An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure. J Hazard Mater 158:280–286

    Article  Google Scholar 

  • Naito C, Cox D et al (2012) Fuel storage container performance during the 2011 Tohoku japan tsunami. J Perform Constr Fac, 10.1061/(ASCE)CF.1943-5509.0000339

    Google Scholar 

  • Nandasena NAK, Paris R, Tanaka N (2011) Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar Geol 281:70–84, Elsevier

    Article  Google Scholar 

  • Neilson AJ (1985) Empirical equations for the perforation of mild steel plates. J Impact Eng 3:137–142

    Article  Google Scholar 

  • Nishi H (2012) Damage on Hazardous Materials Facilities. In: international symposium on engineering lessons learned from the 2011 Great East Japan Earthquake, Tokyo

    Google Scholar 

  • Nistor I, Palermo D et al (2010) Experimental and numerical modeling of tsunami loading on structures. In: International conference on coastal engineering, ASCE

    Google Scholar 

  • Nistor I, Palermo D et al (2010b) In: Kim YC (ed) Tsunami-induced forces on structures. Handbook of coastal and ocean engineering. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 261–286

    Google Scholar 

  • Norio O, Ye T, Kajitani Y, Shi P, Tatano H (2011) The 2011 Eastern Japan great earthquake disaster: overview and comments. Int J Disaster Risk Sci 2(1):34–42

    Article  Google Scholar 

  • Ohte S, Yoshizawa H, Chiba N, Shida S (1982) Impact strength of steel plates struck by projectiles. Bull Japan Soc Mech Eng 25:1226–1231

    Article  Google Scholar 

  • Palermo D, Nistor I (2008) Tsunami-induced loading on structures. Structure Magazine 3:10–13

    Google Scholar 

  • Pophet N, Kaewbanjak N, Asavanant J, Ioualalen M (2011) High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids 40:258–268, Elsevier

    Article  Google Scholar 

  • Reese S, Bradley BA, Bind J, Smart G, Power W, Sturman J (2011) Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth Sci Rev 107:156–173, Elsevier

    Article  Google Scholar 

  • Ruiz C, Salvatorelli-D’Angelo F, Thompson VK (1989) Elastic response of thin-wall cylindrical vessels to blast loading. Comput Fluids 32(5):1061–1072

    Google Scholar 

  • Saatçioğlu M (2009) Performance of structures during the 2004 Indian Ocean tsunami and tsunami induced forces for structural design. Earthquake Tsunamis 11:153–178, A. T. Tankut, Springer Netherlands

    Article  Google Scholar 

  • Sakakiyama T, Matsuura S et al (2009) Tsunami force acting on oil tanks and buckling analysis for tsunami pressure. J Disaster Res 4(6):427–435

    Google Scholar 

  • Seveso Inspection Tool (2009) Réservoirs de stockage aériens atmosphériques, Deuxième version test, CRC/SIT/012-F

    Google Scholar 

  • Sladen A, Hébert H, Schindelé F, Reymond D (2007) L’aléa tsunami en polynésie française : apports de la simulation numérique. C R Géosci 339:303–316, Elsevier

    Article  Google Scholar 

  • Suguino H, Iwabuchi Y et al (2008) Development of probabilistic methodology for evaluating tsunami risk on nuclear power plants. In: The 14th World Conference on Earthquake Engineering, Beijing

    Google Scholar 

  • Talaslidis DG, Manolis GD, Paraskevopoulos E, Panagiotopoulos C, Pelekasis N (2004) The Sun website, UK: http://www.thesun.co.uk/sol/homepage/news/3615721/Four-die-in-oil-refinery-explosion.html

  • TNO (2005a) Methods for the calculation of possible damage to people and objects resulting from releases from hazardous materials. The Green Book CPR16E

    Google Scholar 

  • TNO (2005b) Methods for the calculations of physical effects – due to release of hazardous materials (liquids and gases). The Yellow Book CPR14E 2005

    Google Scholar 

  • Todorovska MII, Hayir A, Trifunac MD (2002) A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn Earthq Eng 22:129–141, Elsevier

    Article  Google Scholar 

  • Tsamopoulos JA (2004) Risk analysis of industrial structures under extreme transient loads. Soil Dyn Earthq Eng 24:435–448

    Article  Google Scholar 

  • Università degli Studi di Torino. Laboratory of Molecular Electrochemistry, Italy. http://lem.ch.unito.it/didattica/infochimica/2008_Esplosivi/Explosion.html

  • USGS (2011) United States Geological Survey. Retrieved 13/03/2012, 2012, from www.usgs.gov

  • van den Berg AC (1985) The multi-energy method, a framework for vapor cloud explosion blast prediction. J Hazard Mater 12:1–10

    Article  Google Scholar 

  • van Zijll de Jong SL, Dominey-Howes D, Roman CE, Calgaro E, Gero A, Veland S, Bird DK, Muliaina T, Tuiloma-Sua D, Afioga TL (2011) Process, practice and priorities – key lessons learnt undertaking sensitive social reconnaissance research as part of an (UNESCO-IOC) International Tsunami Survey Team. Earth-Sci Rev 107:174–192, Elsevier

    Article  Google Scholar 

  • Ward SN (2011) In: Gupta HK (ed) Tsunamis. Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 1473–1492

    Google Scholar 

  • Wijetunge JJ (2006) Tsunami on 26 December 2004: spatial distribution of tsunami height and the extent of inundation in Sri Lanka. Sci Tsunami Haz 24(3):225–240

    Google Scholar 

  • Wilson RI, Dengler LA, Goltz JD, Legg MR, Miller KM, Ritchie A, Whitmore PM (2011) Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami. Earth-Sci Rev 107:193–200, Elsevier

    Article  Google Scholar 

  • Xie M (2007) Thermodynamic and gas dynamic aspects of a BLEVE, Delft University of Technology, No.: 04–200708

    Google Scholar 

  • Yeh H (2008) Maximum fluid forces in the tsunami runup zone. J Waterw Port Coast Ocean Eng 132(6):496–501

    Article  Google Scholar 

  • Zhang DH, Yip TL, Ng CO (2009) Predicting tsunami arrivals: estimates and policy implications. Mar Policy 33:643–650, Elsevier

    Article  Google Scholar 

  • Zhao BB, Duan WY, Webster WC (2011) Tsunami simulation with Green-Naghdi theory. Ocean Eng 3:389–396, Elsevier

    Article  Google Scholar 

Download references

Acknowledgments

The present study has been developed within the framework of the research projects VULCAIN and INTERNATECH, with the partial financial support by Agence Nationale de la Recherche (ANR: PGCU 2007, and Flash Japon 2011). The Chinese-French bilateral cooperation program PHC XU GUANGQI 2012 (Code Project: 27939XK) has also been helpful for the preparation and final redaction of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mebarki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mebarki, A. et al. (2014). Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects. In: Kontar, Y., Santiago-Fandiño, V., Takahashi, T. (eds) Tsunami Events and Lessons Learned. Advances in Natural and Technological Hazards Research, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7269-4_15

Download citation

Publish with us

Policies and ethics