Composite Pulses in Inhomogeneous Field NMR

  • Galina S. Kupriyanova
  • Vitaliy V. Molchanov
  • Evgeniy A. Severin
  • Ivan G. Mershiev
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


This work presents the result of a series of experiments for the study of composite pulses to compensate the inhomogeneity of a magnetic field in measurements of relaxation parameters in nuclear magnetic resonance (NMR). The possibilities of the identification are based on the relaxation characteristics of the NMR signals. An experimental study of 18 types of composite pulses for the excitation of the induction signal and spin echo without phase distortion was made. The most effective types of composite pulses were proposed for relaxation measurements in low inhomogeneous fields.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Signal Phase Distortion Relaxation Time Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NATO Science for Peace and Security Programme, under Science for Peace project No. 982836.


  1. 1.
    Blümich B, Casanova F, Appelt S (2009) NMR at low magnetic fields. Chem Phys Lett 477:231–240ADSCrossRefGoogle Scholar
  2. 2.
    Blumich B, Guthausen A, Zimmer G, Blumler P (1998) Analysis of polymer materials by surface NMR via the MOUSE. J Magn Reson 130:1–7CrossRefADSGoogle Scholar
  3. 3.
    Mauler J, Danieli E, Casanova F, Blumich B (2009) Identification of liquids encountered in carr-on-luggage by mobile nmr. In: Fraissard J, Lapina O (eds) Explosives detection using magnetic and nuclear resonance techniques, NATO science for peace and security series B. Springer, Dordrecht, pp 193–203CrossRefGoogle Scholar
  4. 4.
    Kumar S, Prado P (2009) Detection of concealed liquid explosives and illicit drugs in unopened bottles. In: Fraissard J, Lapina O (eds) Explosives detection using magnetic and nuclear resonance techniques, NATO science for peace and security series B. Springer, Dordrecht, p 73CrossRefGoogle Scholar
  5. 5.
    Shaka AJ, Freeman R (1983) Composite pulses with dual compensation. J Magn Reson 55:487–493ADSGoogle Scholar
  6. 6.
    Shaka AJ, Pines A (1987) Symmetric phase-alternating composite pulses. J Magn Reson 71:495–503ADSGoogle Scholar
  7. 7.
    Wimperis S (1994) Broadband, narrowband and passband composite pulses for use in advanced NMR experiments. J Magn Reson A 109:221–231CrossRefADSGoogle Scholar
  8. 8.
    Levitt MH (1996) Composite pulses. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. Wiley, Chichester, pp 2694–2711Google Scholar
  9. 9.
    Waugh JS (1982) Systematic procedure for constructing broadband decoupling sequences. J Magn Reson 49:517–521ADSGoogle Scholar
  10. 10.
    Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338ADSGoogle Scholar
  11. 11.
    Sørensen OW, Eich GW, Levitt MH, Bodenhausen G, Ernst RR (1983) Product operator formalism for the description of NMR pulse experiments. Prog NMR Spectrosc 16:163–192CrossRefGoogle Scholar
  12. 12.
    Bodenhausen G, Kogler H, Ernst RR (1984) Selection of coherence-transfer pathways in NMR pulse experiments. J Magn Reson 58:370–388ADSGoogle Scholar
  13. 13.
    Levitt M, Freeman R (1981) Compensation for pulse imperfections in NMR spin-echo experiments. J Magn Reson 43:65–80; (1979) J Magn Reson 33:473Google Scholar
  14. 14.
    Tycko R (1983) Broadband population inversion. Phys Rev Lett 51:775–777ADSCrossRefGoogle Scholar
  15. 15.
    Tycko R, Pines A, Guckenheimer J (1985) Fixed point theory of iterative excitation schemes in NMR. J Chem Phys 83:2775–2802ADSCrossRefGoogle Scholar
  16. 16.
    Tycko R (1985) Composite pulses without phase distortion. J Magn Reson 61:90–101ADSGoogle Scholar
  17. 17.
    Odedra S, Wimperis S (2012) Use of composite refocusing pulses to form spin echoes. J Magn Reson 214:68–75ADSCrossRefGoogle Scholar
  18. 18.
    Odedra S, Thrippleton MJ, Wimperis S (2012) Dual-compensated antisymmetric composite refocusing pulses for NMR. J Magn Reson 225:81–92ADSCrossRefGoogle Scholar
  19. 19.
    Freeman R, Kempsell SP, Levitt MH (1980) Radiofrequency pulse sequences which compensate their own imperfections. J Magn Reson 38:453–479ADSGoogle Scholar
  20. 20.
    Levitt MH (1982) Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity. J Magn Reson 48:234–264ADSGoogle Scholar
  21. 21.
    Levitt MH, Ernst RR (1983) Composite pulses constructed by a recursive expansion procedure. J Magn Reson 55:247–254ADSGoogle Scholar
  22. 22.
    Tycko R, Schneider E, Pines A (1984) Broadband population inversion in solid state NMR. J Chem Phys 81:680–689ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Galina S. Kupriyanova
    • 1
  • Vitaliy V. Molchanov
    • 1
  • Evgeniy A. Severin
    • 1
  • Ivan G. Mershiev
    • 1
  1. 1.Department of Radiophysics and Information Security, Institute of Physics and TechnologyImmanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations