Advertisement

An Energy-Aware Routing Protocol Using Cat Swarm Optimization for Wireless Sensor Networks

  • Lingping Kong
  • Chien-Ming Chen
  • Hong-Chi Shih
  • Chun-Wei Lin
  • Bing-Zhe He
  • Jeng-Shyang Pan
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 260)

Abstract

In this paper, we propose an energy-aware routing protocol for wireless sensor networks. Our design is based on the ladder diffusion algorithm and cat swarm optimization algorithm. With the properties of ladder diffusion algorithm, our protocol can avoid the generation of circle routes and provide the backup routes. Besides, integrating cat swarm optimization can effectively provide better efficiency than previous works. Experimental results demonstrate that our design reduces the execution time for finding the routing path by 57.88 % compared with a very recent research named LD.

Keywords

WSN Routing Cat swarm optimization 

References

  1. 1.
    Perkins CE, Royer EM (1999) Ad-hoc on-demand distance vector routing. In: Proceedings of 2nd IEEE workshop on mobile computing systems and applications, pp 90–100Google Scholar
  2. 2.
    Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F (2003) Directed diffusion for wireless sensor networking. IEEE/ACM Trans Network 11(1):2–16Google Scholar
  3. 3.
    Ho JH, Shih HC, Liao BY, Chu SC (2012) A ladder diffusion algorithm using ant colony optimization for wireless sensor networks. Inf Sci 192:204–212CrossRefGoogle Scholar
  4. 4.
    Carballido JA, Ponzoni I, Brignole NB (2007) Cgd-ga: a graph-based genetic algorithm for sensor network design. Inf Sci 177(22):5091–5102CrossRefGoogle Scholar
  5. 5.
    He S, Dai Y, Zhou R, Zhao S (2012) A clustering routing protocol for energy balance of wsn based on genetic clustering algorithm. IERI Procedia 2:788–793CrossRefGoogle Scholar
  6. 6.
    Nayak P, Ramamurthy G, et al (2012) A novel approach to an energy aware routing protocol for mobile wsn: Qos provision. In: Proceedings of international conference on advances in computing and communications, IEEE, pp 38–41Google Scholar
  7. 7.
    Chen CM, Lin YH, Chen YH, Sun HM (2013) SASHIMI: secure aggregation via successively hierarchical inspecting of message integrity on WSN. J Inf Hiding Multimedia Signal Process 4(1):57–72Google Scholar
  8. 8.
    Chen CM, Lin YH, Lin YC, Sun HM (2012) RCDA: recoverable concealed data aggregation for data integrity in wireless sensor networks. IEEE Trans Parallel Distrib Syst 23(4):727–734CrossRefGoogle Scholar
  9. 9.
    Chu SC, Huang HC, Shi Y, Wu SY, Shieh CS (2008) Genetic watermarking for zerotree-based applications. Circuits Syst Signal Process 27(2):171–182CrossRefGoogle Scholar
  10. 10.
    Chu SC, Roddick JF, Pan JS (2004) Ant colony system with communication strategies. Inf Sci 167(1):63–76MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66CrossRefGoogle Scholar
  12. 12.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41CrossRefGoogle Scholar
  13. 13.
    Misra R, Mandal C (2006) Ant-aggregation: ant colony algorithm for optimal data aggregation in wireless sensor networks. In: In Proceedings of IFIP international conference on wireless and optical communications networks, IEEE, p. 5Google Scholar
  14. 14.
    Chu SC, Tsai PW, Pan JS (2006) Cat swarm optimization. In: PRICAI 2006: Trends in artificial intelligence, pp 854–858Google Scholar
  15. 15.
    Wang ZH, Chang CC, Li MC (2012) Optimizing least-significant-bit substitution using cat swarm optimization strategy. Inf Sci 192:98–108CrossRefGoogle Scholar
  16. 16.
    Panda G, Pradhan PM, Majhi B (2011) Iir system identification using cat swarm optimization. Expert Syst Appl 38(10):12671–12683CrossRefGoogle Scholar
  17. 17.
    Pradhan PM, Panda G (2012) Solving multi-objective problems using cat swarm optimization. Expert Syst Appl 39(3):2956–2964CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lingping Kong
    • 1
  • Chien-Ming Chen
    • 1
    • 2
  • Hong-Chi Shih
    • 3
  • Chun-Wei Lin
    • 1
    • 2
  • Bing-Zhe He
    • 4
  • Jeng-Shyang Pan
    • 1
    • 2
  1. 1.Innovative Information Industry Research CenterHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina
  2. 2.Shenzhen Key Laboratory of Internet Information CollaborationShenzhenChina
  3. 3.Department of Electronics EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan, Republic of China
  4. 4.Department of Computer Science NationalTsing Hua UniversityHsinchuTaiwan, Republic of China

Personalised recommendations