Advertisement

A Conceptual Framework for Using the Affective Computing Techniques to Evaluate the Outcome of Digital Game-Based Learning

  • Chih-Hung Wu
  • Yi-Lin Tzeng
  • Ray Yueh Min Huang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 260)

Abstract

That’s an interesting issue for how the outcome that educators use angry bird to teach projectile motion physics theorem. For verifying the possibility of playing angry bird to learn the projectile motion physics problem, this study design an experiment that include two different learning methods. One is the tradition learning method, and the other one is to learn the projectile motion using Angry Bird. When student learning, their eye movement data, brain wave and heart beat will be measured for analyzing their attention, emotion and the strategy of solving problem. After learning, they take a posttest to prove the digital game-based learning method can help student learning.

Keywords

Affective computing Eye movement Brain wave Heart rhythm coherence Digital game-based learning 

References

  1. 1.
    Prensky M (2003) Digital game-based learning. ACM Comput Entertainment 1:1–4CrossRefGoogle Scholar
  2. 2.
    Marina P (2009) Digital game-based learning in high school computer science education: impact on educational effectiveness and student motivation. Comput Educ 52:1–12CrossRefGoogle Scholar
  3. 3.
    Ravaja N, Turpeinen M, Saari T, Puttonen S, Keltikangas-Jarvinen L (2008) The psychophysiology of James Bond: Phasic emotional responses to violent video game events. Emotion 8:114–120CrossRefGoogle Scholar
  4. 4.
    Picard R (1997) Affective computing. MIT Press, CambridgeGoogle Scholar
  5. 5.
    Ben Ammar M, Neji M, Alimi AM, Gouardères G (2010) The affective tutoring system. Expert Syst Appl 37:3013–3023CrossRefGoogle Scholar
  6. 6.
    Lin T, Imamiya A, Mao X (2008) Using multiple data sources to get closer insights into user cost and task performance. Interact Comput 20:364–374CrossRefGoogle Scholar
  7. 7.
    Rashid NA, Taib MN, Lias S, Sulaiman N, Murat ZH, Kadir RSSA (2011) Learners’ learning style classification related to IQ and stress based on EEG. Procedia Soc Behav Sci 29:1061–1070CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Lee M (2012) Emotion development system by interacting with human EEG and natural scene understanding. Cogn Syst Res 14:37–49CrossRefGoogle Scholar
  9. 9.
    Berka C, Levendowski DJ, Cvetinovic MM, Petrovic MM, Davis G, Lumicao MN, Zivkovic VT, Popovic MV, Olmstead R (2004) Real-Time Analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. Int J Hum Comput Interact 17:151–170CrossRefGoogle Scholar
  10. 10.
    Berka C, Levendowski DJ, Lumicao MN, Yau A, Davis G, Zivkovic VT, Olmstead RE, Tremoulet PD, Craven PL (2007) EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat Space Environ Med 78:B231–244Google Scholar
  11. 11.
    von Borell E, Langbein J, Després G, Hansen S, Leterrier C, Marchant-Forde J, Marchant-Forde R, Minero M, Mohr E, Prunier A, Valance D, Veissier I (2007) Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A review. Physiol Behav 92:293–316CrossRefGoogle Scholar
  12. 12.
    Kim KH, Ban SW, Kim SR (2004) Emotion recognition system using short-term monitoring of physiological signals. Med Biol Eng Comput 42:419–427CrossRefGoogle Scholar
  13. 13.
    Greene BR, Boylan GB, Reilly RB, de Chazal P, Connolly S (2007) Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin Neurophysiol 118:1348–1359CrossRefGoogle Scholar
  14. 14.
    Ruffman T, Henry JD, Livingstone V, Phillips LH (2008) A meta-analytic review of emotion recognition and aging: implications for neuropsychological models of aging. Neurosci Biobehav Rev 32:863–881CrossRefGoogle Scholar
  15. 15.
    Latanov AV, Konovalova NS, Yermachenko AA (2008) EEG and EYE tracking for visual search task investigation in humans. Int J Psychophysiol 69:140CrossRefGoogle Scholar
  16. 16.
    Zhang Q, Lee M (2010) A hierarchical positive and negative emotion understanding system based on integrated analysis of visual and brain signals. Neurocomputing 73:3264–3272CrossRefGoogle Scholar
  17. 17.
    Srinivasan N, Gupta R (2010) Emotion-attention interactions in recognition memory for distractor faces. Emotion 10:207–215CrossRefGoogle Scholar
  18. 18.
    Yang B, Lugger M (2010) Emotion recognition from speech signals using New Harmony features. Signal Process 90:1415–1423CrossRefMATHGoogle Scholar
  19. 19.
    Murugappan M, Ramachandran N, Sazali Y (2010) Classification of human emotion from EEG using discrete wavelet transform. J Biomed Sci Eng 3:390–396CrossRefGoogle Scholar
  20. 20.
    Lee EC, Woo JC, Kim JH, Whang M, Park KR (2010) A brain–computer interface method combined with eye tracking for 3D interaction. J Neurosci Methods 190:289–298CrossRefGoogle Scholar
  21. 21.
    Dimigen O, Sommer W, Hohlfeld A, Jacobs AM, Kliegl R (2011) Coregistration of eye movements and EEG in natural reading: analyses and review. J Exp Psychol Gen 140:552–572CrossRefGoogle Scholar
  22. 22.
    Schmid PC, Schmid Mast M, Bombari D, Mast FW, Lobmaier JS (2011) How mood states affect information processing during facial emotion recognition: an eye tracking study. Swiss J Psychol 70:223–231Google Scholar
  23. 23.
    Chen C-M, Wang H-P (2011) Using emotion recognition technology to assess the effects of different multimedia materials on learning emotion and performance. Libr Inf Sci Res 33:244–255CrossRefGoogle Scholar
  24. 24.
    Patel M, Lal SKL, Kavanagh D, Rossiter P (2011) Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst Appl 38:7235–7242CrossRefGoogle Scholar
  25. 25.
    Zhao C, Zhao M, Liu J, Zheng C (2012) Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid Anal Prev 45:83–90CrossRefGoogle Scholar
  26. 26.
    Valderrama M, Alvarado C, Nikolopoulos S, Martinerie J, Adam C, Navarro V, Le Van Quyen M (2012) Identifying an increased risk of epileptic seizures using a multi-feature EEG–ECG classification. Biomed Signal Process ControlGoogle Scholar
  27. 27.
    Wen-Hao H (2011) Evaluating learners’ motivational and cognitive processing in an online game-based learning environment. Comput Hum Behav 27:694–704CrossRefGoogle Scholar
  28. 28.
    Baldaro B, Tuozzi G, Codispoti M, Montebarocci O, Barbagli F, Trombini E, Rossi N (2004) Aggressive and non-violent videogames: short-term psychological and cardiovascular effects on habitual players. Stress Health 20:203–208CrossRefGoogle Scholar
  29. 29.
    Annette MS (2004) Attention performance in young adults with learning disabilities. Learn Individ Differ 14:125–133CrossRefGoogle Scholar
  30. 30.
    Robinson K, Winner D (1998) Rehabilitation of attentional deficits following brain injury. J Cogn Rehabil 16:8–15Google Scholar
  31. 31.
    Goleman D (1995) Emotional intelligence. Bantam Books, New YorkGoogle Scholar
  32. 32.
    Tsai M-J, Hou H-T, Lai M-L, Liu W-Y, Yang F-Y (2012) Visual attention for solving multiple-choice science problem: an eye-tracking analysis. Comput Educ 58:375–385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Chih-Hung Wu
    • 1
  • Yi-Lin Tzeng
    • 1
  • Ray Yueh Min Huang
    • 2
  1. 1.National Taichung University of EducationTaichungTaiwan, Republic of China
  2. 2.National Cheng Kung UniversityTainanTaiwan, Republic of China

Personalised recommendations