Advances in Technological Design to Optimize Exposure and Improve Image Quality

  • Daniel F. Gutierrez
  • Habib ZaidiEmail author


Multimodality imaging is playing a key role in the clinical management of patients in routine diagnosis, staging, restaging and assessment of response to treatment, surgery and radiation therapy planning of malignant diseases. The complementarity between anatomical (CT and MRI) and functional/molecular (SPECT and PET) imaging modalities is now well recognized and the role of fusion imaging is widely used as a central piece of the general tree of clinical decision making. Moreover, dual-modality imaging technologies including SPECT/CT, PET/CT and nowadays PET/MR represent the leading component of a modern healthcare facility. There have been significant advances in data acquisition along with innovative approaches to image reconstruction and processing with the aim to improve image quality and diagnostic information. However, CT procedures involve relatively high doses to the patient, which triggered many initiatives to reduce the delivered dose particularly in paediatric practice.

This chapter discusses the state-of-the-art developments and challenges of multimodality medical imaging technologies and dose reduction strategies. Future opportunities and the challenges limiting their adoption in clinical and research settings will also be addressed.


Hybrid imaging Image quality Multimodality imaging Patient dose Radiation exposure 



This work was supported by the Swiss National Science Foundation under grant SNSF 31003A-135576, Geneva Cancer League, the Indo-Swiss Joint Research Programme ISJRP 138866, and Geneva University Hospital under grant PRD 11-II-1.


  1. 1.
    Accorsi R, Karp JS, Surti S (2010) Improved dose regimen in pediatric PET. J Nucl Med 51(2):293–300PubMedCrossRefGoogle Scholar
  2. 2.
    Alavi A, Basu S, Torigian D et al (2008) Is planar imaging in radiology and nuclear medicine a viable option for the 21st century? Q J Nucl Med Mol Imaging 52(4):319–322PubMedGoogle Scholar
  3. 3.
    Alessio AM, Kinahan PE, Manchanda V et al (2009) Weight-based, low-dose pediatric whole-body PET/CT protocols. J Nucl Med 50(10):1570–1577PubMedCrossRefGoogle Scholar
  4. 4.
    Allemand R, Gresset C, Vacher J (1980) Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J Nucl Med 21(2):153–155PubMedGoogle Scholar
  5. 5.
    Ay MR, Mehranian A, Maleki A et al (2012) Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners. Phys Med (in press)Google Scholar
  6. 6.
    Bai C, Kinahan PE, Brasse D et al (2003) An analytic study of the effects of attenuation on tumor detection in whole-body PET oncology imaging. J Nucl Med 44(11):1855–1861PubMedGoogle Scholar
  7. 7.
    Ballinger J (2008) Re: planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time? Eur J Nucl Med Mol Imaging 35(12):2340PubMedCrossRefGoogle Scholar
  8. 8.
    Barrett HH, Myers KJ (2003) Foundations of image science. Wiley, New JerseyGoogle Scholar
  9. 9.
    Barrett HH, Yao J, Rolland JP et al (1993) Model observers for assessment of image quality. Proc Natl Acad Sci U S A 90(21):9758–9765PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28(2):94–108PubMedCrossRefGoogle Scholar
  11. 11.
    Bonte FJ (1976) Nuclear Medicine Pioneer Citation, 1976: David E Kuhl MD. J Nucl Med 17(6):518–519PubMedGoogle Scholar
  12. 12.
    Boyd D, Coonrod J, Dehnert J et al (1974) A high pressure xenon proportional chamber for x-ray laminographic reconstruction using fan beam geometry. IEEE Trans Nucl Sci 21:184–187CrossRefGoogle Scholar
  13. 13.
    Budinger TF (1998) PET instrumentation: what are the limits? Semin Nucl Med 28(3):247–267PubMedCrossRefGoogle Scholar
  14. 14.
    Bushberg JT, Seibert JA, Leidholdt EM (2002) The essential physics of medical imaging, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  15. 15.
    Chen Y, Yang Z, Hu Y et al (2012) Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means. Phys Med Biol 57(9):2667–2688PubMedCrossRefGoogle Scholar
  16. 16.
    Cherry SR (2006) The 2006 Henry N. Wagner lecture: of mice and men (and positrons) -advances in PET imaging technology. J Nucl Med 47(11):1735–1745PubMedGoogle Scholar
  17. 17.
    Cherry SR, Sorenson JA, Phelps ME (2004) Physics in nuclear medicine, 3rd edn. Elsevier Health Sciences, PhiladelphiaGoogle Scholar
  18. 18.
    Coltman JW (1954) The specification of imaging properties by response to a sine wave. J Opt Soc Am 44:468–469CrossRefGoogle Scholar
  19. 19.
    Conti M (2011) Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 38(6):1147–1157PubMedCrossRefGoogle Scholar
  20. 20.
    Deutsches Institut für Normung (2012) Publication DIN 6868–157 Image quality assurance in diagnostic X-ray departments – Part 157: RöV acceptance and constancy test of image display systems in theirs environment. Deutsches Institut für Normung, BerlinGoogle Scholar
  21. 21.
    Fellgett BP (1958) Equivalent quantum-efficiencies of photographic emulsions. The Observatories, CambridgeGoogle Scholar
  22. 22.
    Flohr TG, Bruder H, Stierstorfer K et al (2008) Image reconstruction and image quality evaluation for a dual source CT scanner. Med Phys 35(12):5882–5897PubMedCrossRefGoogle Scholar
  23. 23.
    Flohr TG, Leng S, Yu L et al (2009) Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality. Med Phys 36(12):5641–5653PubMedCrossRefGoogle Scholar
  24. 24.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268PubMedCrossRefGoogle Scholar
  25. 25.
    Gaa J, Rummeny EJ, Seemann MD (2004) Whole-body imaging with PET/MRI. Eur J Med Res 9(6):309–312PubMedGoogle Scholar
  26. 26.
    Gambhir SS, Berman DS, Ziffer J et al (2009) A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 50(4):635–643PubMedCrossRefGoogle Scholar
  27. 27.
    Green DM, Swets JA (1974) Signal detection theory and psychophysics. Krieger Publishing, New YorkGoogle Scholar
  28. 28.
    Gutierrez D, Monnin P, Valley JF et al (2005) A strategy to qualify the performance of radiographic monitors. Radiat Prot Dosimetry 114(1–3):192–197PubMedCrossRefGoogle Scholar
  29. 29.
    Gutierrez D, Schmidt S, Denys A et al (2007) CT-automatic exposure control devices: what are their performances? Nucl Instrum Methods Phys Res A 580:990–995CrossRefGoogle Scholar
  30. 30.
    Hart D, Wall BF (2002) Radiation exposure of the UK population from medical and dental X-ray examinations. Publication NRPB-W4. National Radiological Protection Board, ChiltonGoogle Scholar
  31. 31.
    Hasegawa B, Zaidi H (2006) Dual-modality imaging: more than the sum of its components. In: Zaidi H (ed) Quantitative analysis in nuclear medicine imaging. Springer, New YorkGoogle Scholar
  32. 32.
    Hofmann M, Pichler B, Schölkopf B et al (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):93–104CrossRefGoogle Scholar
  33. 33.
    Holte S, Ostertag H, Kesselberg M (1987) A preliminary evaluation of a dual crystal positron camera. J Comput Assist Tomogr 11(4):691–697PubMedCrossRefGoogle Scholar
  34. 34.
    Hounsfield GN (1973) Computerized transverse axial scanning (tomography) 1. Description of system. Br J Radiol 46(552):1016–1022PubMedCrossRefGoogle Scholar
  35. 35.
    Huang B, Law MW, Khong PL (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251(1):166–174PubMedCrossRefGoogle Scholar
  36. 36.
    Hurter F, Driffield VC (1890) Photochemical investigations and a new method of determination of the sensitiveness of photographic plates. J Soc Chem Indian 9:455CrossRefGoogle Scholar
  37. 37.
    International Commission on Non-Ionizing Radiation Protection (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74(4):494–522Google Scholar
  38. 38.
    International Commission on Non-Ionizing Radiation Protection (2004) Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87(2):197–216CrossRefGoogle Scholar
  39. 39.
    International Electrotechnical Commission (2003) Medical electrical equipment – characteristics of digital X-ray imaging devices. Part 1: determination of the detective quantum efficiency. International Electrotechnical Commission, Geneva, 62220–1Google Scholar
  40. 40.
    Kachelriess M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28(4):475–490PubMedCrossRefGoogle Scholar
  41. 41.
    Kalender WA, Seissler W, Klotz E et al (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176(1):181–183PubMedGoogle Scholar
  42. 42.
    Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233(3):649–657PubMedCrossRefGoogle Scholar
  43. 43.
    Kalra MK, Wittram C, Maher MM et al (2003) Can noise reduction filters improve low-radiation-dose chest CT images? Pilot study. Radiology 228(1):257–264PubMedCrossRefGoogle Scholar
  44. 44.
    Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22(8):1613–1623PubMedCrossRefGoogle Scholar
  45. 45.
    Kimme-Smith C, Wang J, DeBruhl N et al (1994) Mammograms obtained with rhodium vs molybdenum anodes: contrast and dose differences. AJR Am J Roentgenol 162(6):1313–1317PubMedCrossRefGoogle Scholar
  46. 46.
    Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33(3):166–179PubMedCrossRefGoogle Scholar
  47. 47.
    Kuhls-Gilcrist A, Jain A, Bednarek DR et al (2010) Accurate MTF measurement in digital radiography using noise response. Med Phys 37(2):724–735PubMedCrossRefGoogle Scholar
  48. 48.
    Lcdley RS, Chiro GD, Luessenhop AJ et al (1974) Computerized transaxial X-ray tomography of the human body. Science 186:207–212CrossRefGoogle Scholar
  49. 49.
    Lewellen TK (1998) Time-of-flight PET. Semin Nucl Med 28(3):268–275PubMedCrossRefGoogle Scholar
  50. 50.
    Mariani G, Bruselli L, Duatti A et al (2008) Is PET always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging 35(8):1560–1565PubMedCrossRefGoogle Scholar
  51. 51.
    Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm-initial clinical experience. Radiology 254(1):145–153PubMedCrossRefGoogle Scholar
  52. 52.
    Matsumoto Y, Masuda T, Imada N et al (2012) Examination of the chest computed tomography scan condition optimization in consideration of the influence of the position of the arms. Nihon Hoshasen Gijutsu Gakkai Zasshi 68(7):851–856PubMedCrossRefGoogle Scholar
  53. 53.
    Melcher CL, Schweitzer JS (1992) Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci 39:502–505CrossRefGoogle Scholar
  54. 54.
    Metz C (2008) ROC analysis in medical imaging: a tutorial review of the literature. Radiol Phys Technol 1(1):2–12PubMedCrossRefGoogle Scholar
  55. 55.
    Metz CE (1986) ROC methodology in radiologic imaging. Invest Radiol 21(9):720–733PubMedCrossRefGoogle Scholar
  56. 56.
    Monnin P, Gutierrez D, Bulling S et al (2007) A comparison of the performance of digital mammography systems. Med Phys 34(3):906–914PubMedCrossRefGoogle Scholar
  57. 57.
    Monnin P, Gutierrez D, Bulling S et al (2005) A comparison of the imaging characteristics of the new Kodak Hyper Speed G film with the current T-MAT G/RA film and the CR 9000 system. Phys Med Biol 50(19):4541–4552PubMedCrossRefGoogle Scholar
  58. 58.
    Morgan RH, Hodges PC (1945) An evaluation of automatic exposure control equipment in photofluorography. Radiology 45:588–593PubMedGoogle Scholar
  59. 59.
    Moses WW (2003) Time of flight in PET revisited. IEEE Trans Nucl Sci 50(5):1325–1330CrossRefGoogle Scholar
  60. 60.
    Pan X, Sidky EY, Vannier M (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl 25(12):123009CrossRefGoogle Scholar
  61. 61.
    Pichler BJ, Wehrl HF, Kolb A et al (2008) Positron emission tomography/magnetic resonance imaging: the next generation of multimodality imaging? Semin Nucl Med 38(3):199–208PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Radon J (1917) On the determination of functions from their integrals along certain manifolds. Ber Saechs Akad Wiss 69:262–277Google Scholar
  63. 63.
    Reader AJ, Zaidi H (2007) Advances in PET image reconstruction. PET Clin 2:173–190CrossRefGoogle Scholar
  64. 64.
    Rhodes DJ, Hruska CB, Phillips SW et al (2011) Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology 258(1):106–118PubMedCrossRefGoogle Scholar
  65. 65.
    Rose A (1948) The sensitivity performance of the human eye on an absolute scale. J Opt Soc Am 38:196–208PubMedCrossRefGoogle Scholar
  66. 66.
    Rossmann K, Wiley BE (1970) The central problem in the study of radiographic image quality. Radiology 96(1):113–118PubMedGoogle Scholar
  67. 67.
    Samei E, Badano A, Chakraborty D et al (2005) Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys 32(4):1205–1225PubMedCrossRefGoogle Scholar
  68. 68.
    Samei E, Flynn MJ, Reimann DA (1998) A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med Phys 25(1):102–113PubMedCrossRefGoogle Scholar
  69. 69.
    Schlyer D, Rooney W, Woody C et al (2004) Development of a simultaneous PET/MRI scanner. In: IEEE Nucl Sci Symp Conf Rec 3419–3421Google Scholar
  70. 70.
    Seguchi S, Aoyama T, Koyama S et al (2010) Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner. Med Phys 37(11):5579–5585PubMedCrossRefGoogle Scholar
  71. 71.
    Shaw R (1963) The equivalent quantum efficiency of the photographic process. J Photogr Sci 11:199–204Google Scholar
  72. 72.
    Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169(22):2078–2086PubMedCrossRefGoogle Scholar
  73. 73.
    Townsend DW, Beyer T (2002) A combined PET/CT scanner: the path to true image fusion. Br J Radiol 75:S24–S30PubMedGoogle Scholar
  74. 74.
    Verdun FR, Theumann N, Poletti PA (2006) Impact of the introduction of 16-row MDCT on image quality and patient dose: phantom study and multi-centre survey. Eur Radiol 16(12):2866–2874PubMedCrossRefGoogle Scholar
  75. 75.
    Wagner RF (1978) Decision theory and the signal-to-noise ratio of Otto Schade. Photogr Sci Eng 22:41–46Google Scholar
  76. 76.
    Wagner RF, Weaver KE (1972) An assortment of image quality indexes for radiographic film-screen combinations – can they be resolved? Appl Opt Instr Med Proc SPIE 35:83–94Google Scholar
  77. 77.
    Watson CC, Casey ME, Bendriem B et al (2005) Optimizing injected dose in clinical PET by accurately modeling the counting-rate response functions specific to individual patient scans. J Nucl Med 46(11):1825–1834PubMedGoogle Scholar
  78. 78.
    Webb S (1992) The physics of medical imaging. Institute of Physics, LondonGoogle Scholar
  79. 79.
    Weber MJ, Monchamp RR (1973) Luminescence of Bi4Ge3O12: spectral and decay properties. J Appl Phys 44:5495–5499CrossRefGoogle Scholar
  80. 80.
    Xia T, Alessio AM, De Man B et al (2012) Ultra-low dose CT attenuation correction for PET/CT. Phys Med Biol 57(2):309–328PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Xu J, Mahesh M, Tsui BM (2009) Is iterative reconstruction ready for MDCT? J Am Coll Radiol 6(4):274–276PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Zaidi H (ed) (2006) Quantitative analysis in nuclear medicine imaging. Springer, New YorkGoogle Scholar
  83. 83.
    Zaidi H (2007) Is MRI-guided attenuation correction a viable option for dual-modality PET/MR imaging? Radiology 244(3):639–642PubMedCrossRefGoogle Scholar
  84. 84.
    Zaidi H (2007) Is radionuclide transmission scanning obsolete for dual-modality PET/CT systems? Eur J Nucl Med Mol Imaging 34(6):815–818PubMedCrossRefGoogle Scholar
  85. 85.
    Zaidi H, Del Guerra A (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38(10):5667–5689PubMedCrossRefGoogle Scholar
  86. 86.
    Zaidi H, Hasegawa B (2003) Determination of the attenuation map in emission tomography. J Nucl Med 44(2):291–315PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalGenevaSwitzerland
  2. 2.Geneva Neuroscience CenterGeneva UniversityGenevaSwitzerland
  3. 3.Department of Nuclear Medicine and Molecular ImagingUniversity of Groningen, University Medical Center GroningenGroningenNetherlands

Personalised recommendations