Dissipation and Recycling: What Losses, What Dissipation Impacts, and What Recycling Options?

  • Masaru Yarime
  • Cynthia Carliell-Marquet
  • Deborah T. Hellums
  • Yuliya Kalmykova
  • Daniel J. Lang
  • Quang Bao Le
  • Dianne Malley
  • Leo S. Morf
  • Kazuyo Matsubae
  • Makiko Matsuo
  • Hisao Ohtake
  • Alan P. Omlin
  • Sebastian Petzet
  • Roland W. Scholz
  • Hideaki Shiroyama
  • Andrea E. Ulrich
  • Paul Watts
Chapter

Abstract

This chapter describes the activities in the Dissipation and Recycling Node of Global TraPs, a multistakeholder project on the sustainable management of the global phosphorus (P) cycle. Along the P supply and demand chain, substantial amounts are lost, notably in mining, processing, agriculture via soil erosion, food waste, manure, and sewage sludge. They are not only critical with respect to wasting an essential resource, but also contribute to severe environmental impacts such as eutrophication of freshwater ecosystems or the development of dead zones in oceans. The Recycling and Dissipation Node covers the phosphorus system from those points where phosphate-containing waste or losses have occurred or been produced by human excreta, livestock, and industries. This chapter describes losses and recycling efforts, identifies knowledge implementation and dissemination gaps as well as critical questions, and outlines potential transdisciplinary case studies. Two pathways toward sustainable P management are in focus: To a major goal of sustainable P management therefore must be to (1) quantify P stocks and flows in order to (2) identify key areas for minimizing losses and realizing recycling opportunities. Several technologies already exist to recycle P from different sources, including manure, food waste, sewage, and steelmaking slag; however, due to various factors such as lacking economic incentives, insufficient regulations, technical obstacles, and missing anticipation of unintended impacts, only a minor part of potential secondary P resources has been utilized. Minimizing losses and increasing recycling rates as well as reducing unintended environmental impacts triggered by P dissipation require a better understanding of the social, technological, and economic rationale as well as the intrinsic interrelations between nutrient cycling and ecosystem stability. A useful approach will be to develop new social business models integrating innovative technologies, corporate strategies, and public policies. That requires intensive collaboration between different scientific disciplines and, most importantly, among a variety of key stakeholders, including industry, farmers, and government agencies.

Keywords

Phosphorus and eutrophication Environmental costs of phosphate reduction Phosphorus recycling in industry Phosphorus recycling in agriculture Phosphorus recycling from sewage 

References

  1. Albert E (2004) Versuchsergebnisse zur Stickstoff- und Phosphorwirkung von Fleischknochenmehl. In: 93. Sitzung des DLG Ausschuss für Pflanzenschutz. Deutsche Landwirtschafts-Gesellschaft e.V., Derenburg, 25 Mai 2004. Sächsische Landesanstalt für LandwirtschaftGoogle Scholar
  2. Antonini S, Nguyen PT, Arnold U, Eichert T, Clemens J (2012) Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam. Sci Total Environ 414:592–599CrossRefGoogle Scholar
  3. Australian Government (2011) Australia New Zealand Food Standards Code—Standard 2.2.1—Meat and Meat Products—F2011C00615Google Scholar
  4. AWEL (2008) Phosphor im Klärschlamm—Informationen zur künftigen Rückgewinnung. Baudirektion Kanton Zürich, AWEL Amt für Abfall, Wasser, Energie und Luft [phosphorus in sewage sludge—Information about future retrieval, Building Department of the Canton of Zürich, AWEL Office for Waste, Water, Energy and Air] (http://www.klaerschlamm.zh.ch)
  5. Bateman A, van der Horst D, Boardman D, Kansal A, Carliell-Marquet CM (2011) Closing the phosphorus loop in England: the spatio-temporal balance of phosphorus capture from anaerobically-digested manure versus crop demand for phosphorus. Resour Conserv Recycl 55:1146–1153CrossRefGoogle Scholar
  6. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience 51(3):227–234CrossRefGoogle Scholar
  7. Biello D (2008) Oceanic dead zones continue to spread. Scientific American. http://www.sciam.com/article.cfm?id=oceanic-dead-zones-spread. August 15
  8. Binder CR, de Baan L, Wittmer D (2009) Phosphorflüsse in der Schweiz: Stand, Risiken und Handlungsoptionen. Abschlussbericht. Umwelt-Wissen Nr. 0928. Bundesamt für Umwelt, BernGoogle Scholar
  9. Commission of the European Communities (2002) Regulation (EC) No. 1774/2002 of the European parliament and of the Council of 3 October 2002 on management rules for animal by-products not intended for human consumptionGoogle Scholar
  10. Commission of the European Communities (2010) Preparatory study on food waste across EU 27. http://ec.europa.eu/environment/eussd/pdf/bio_foodwaste_report.pdf
  11. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19(2):292–305CrossRefGoogle Scholar
  12. Drizo A (2012) Innovative phosphorus removal technologies. Available at http://www.azocleantech.com/article.aspx?ArticleID=226-6. Accessed 7 Mar
  13. Dutch Nutrient Platform (2011) Phosphate value Chain agreement. Dutch Nutrient Platform, 4 OctGoogle Scholar
  14. Etter B, Tilley E, Khadka R, Udert KM (2011) Low-cost struvite production using source-separated urine in Nepal. Water Res 45(2):852–862CrossRefGoogle Scholar
  15. European Phosphorus Platform (2013) Joint declaration for the launch of a European Phosphorus Platform. In: 1st European sustainable phosphorus conference 2013, Brussels, 6–7 MarchGoogle Scholar
  16. Falconer I (ed) (1993) Algal Toxins in seafood and drinking water, 1st edn. Academic Press, LondonGoogle Scholar
  17. Foy RH (2005) The return of the phosphorus paradigm: agricultural phosphorus and eutrophication. In: Sims JT, Sharpley AN (eds) Phosphorus agriculture and the environment, vol 46. American Society of Agronomy Monograph, Madison, pp 911–939Google Scholar
  18. Goto K (2009) Advanced utilization of sludge incineration ashes (conversion to phosphorus fertilizers and use of incineration ashes). In: Ohtake H (ed) Recovery and effective utilization of phosphorus resources. Science & Technology, Tokyo, pp 365–382Google Scholar
  19. Government of Manitoba (2008) MARC 2008 User's Manual: manure application rate calculator version 2.1.3. Government of Manitoba, represented by the Minister of Agriculture, Food and Rural Initiatives, JanuaryGoogle Scholar
  20. GTZ Deutscher Gesellschaft für Technische Zusammenarbeit (2005a) Data sheets for ecosan projects: 004 ecological housing estate, Lübeck FlintenbreiteGoogle Scholar
  21. GTZ Deutscher Gesellschaft für Technische Zusammenarbeit (2005b) Data sheets for ecosan projects: 008 Gebers collective housing project, Orhem, SwedenGoogle Scholar
  22. Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A (2011) Global food losses and food waste: extent, causes and prevention. FAO, RomeGoogle Scholar
  23. Hermann L (ed) (2011) How energy from livestock manure can reduce eutrophication. Ecoregion perspectives. Fourth Issue: sustainable agriculture in the Baltic Sea region in times of peak phosphorus and global change. CBSS-Baltic21Google Scholar
  24. Hernandez Leal L (2010) Removal of micropollutants from greywater. Ph.D. thesis, Wageningen University, The NetherlandsGoogle Scholar
  25. Hirota R, Kuroda A, Kato J, Ohtake H (2010) Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. J Biosci Bioeng 109(5):423–432CrossRefGoogle Scholar
  26. Hoekstra AY, Chapagain AK (2007) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour Manage 21:35–48CrossRefGoogle Scholar
  27. Kalmykova Y, Harder R (2012) Pathways and management of phosphorus in urban areas. J Ind Ecol (forthcoming)Google Scholar
  28. Kalmykova Y, Karlfeldt Fedje K (2012) Phosphorus recovery from municipal solid waste incineration fly ash. Under reviewGoogle Scholar
  29. Karlsson P, Aarsrud P, de Blois M (2008) Återvinning av näringsämnen ur svartvatten—utvärdering projekt Skogaberg. Svenskt Vatten Utveckling, Report 2008-10Google Scholar
  30. Kvarnström E, Emilsson K, Richert Stintzing A, Johansson M, Jönsson H, af Petersens E, Schönning C, Christensen J, Hellström D, Qvarnström L, Ridderstolpe P, Drangert J-O (2006) Urine diversion: one step towards sustainable sanitation. Report 2006-1, EcoSanResGoogle Scholar
  31. Lamprea K, Ruban V (2008) Micro pollutants in atmospheric deposition, roof runoff and storm water runoff of a suburban Catchment in Nantes, France. In: 11th International conference on urban drainage, Edinburgh, United KingdomGoogle Scholar
  32. Lamprecht H, Lang DJ, Binder CR, Scholz RW (2011) Animal bone disposal during the BSE crisis in Switzerland—an example of a “disposal dilemma”. Gaia 20(2):112–121Google Scholar
  33. Lienert J, Bürki T, Escher B (2007) Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in feces and urine. Water Science Technology 56(5):87–96CrossRefGoogle Scholar
  34. Liu Y, Villalba G, Ayres RU, Schroder H (2008) Global phosphorus flows and environmental impacts from a consumption perspective. J Ind Ecol 12(2):229–247CrossRefGoogle Scholar
  35. Lundqvist J, de Fraiture C, Molden D (2008) saving water: from field to fork. Curbing losses and wastage in the food Chain. SIWI Policy Brief. Stockholm International Water Institute, SwedenGoogle Scholar
  36. MacDonald JM, Ribaudo MO, Livingston MJ, Beckman J, Huang W (2009) Manure use for fertilizer and for energy: report to congress. Economic Research Service, United States Department of Agriculture, JuneGoogle Scholar
  37. Malley DF, Ulrich AE, Watts PD (2009) Food and water security in the Lake Winnipeg Basin—transition to the futureGoogle Scholar
  38. Matsubae K, Kajiyama J, Hiraki T, Nagasaka T (2011) Virtual phosphorus ore requirement of Japanese economy. Chemosphere 84:767–772CrossRefGoogle Scholar
  39. Meinzinger F (2010) Resource efficiency of urban sanitation systems: a comparative assessment using material and energy flow analysis. Ph.D. thesis, Technischen Universität Hamburg-Harburg, GermanyGoogle Scholar
  40. Mesure S (2008) The £20 billion food mountain: britons throw away half of the food produced each year. The Independent: Sunday, 02 MarGoogle Scholar
  41. Monte MC, Fuente E, Blanco A, Negro C (2009) Waste management from pulp and paper production in the European Union. Waste Manage 29:293–308CrossRefGoogle Scholar
  42. Morf LS (2012) Phosphor aus Klärschlamm—Strategie des Kanton Zürichs und der Schweiz (Phosphorus from sewage sludge—the strategy of the Canton of Zürich and Switzerland), vol 45. Essner Tagung Wasser- und Abfallwirtschaft, 14–16 März 2012 in Essen (English version)Google Scholar
  43. Ohtake H (2010) Biorecycle of phosphorus resource for sustainable agriculture and industry. OECD workshop on biotechnology for environment in the future: science, technology and policy, 16–17 Sept 2010Google Scholar
  44. Ohtake H (ed) (2011) The coming phosphorus crisis (Rin shigen kokatsu mondai toha nanika). Handai Livre Publishing, OsakaGoogle Scholar
  45. Olde Venterink H (2011) Legumes have a higher root phosphatase activity than other forbs, particularly under low inorganic P and N supply. Plant Soil 347(1–2):137–146CrossRefGoogle Scholar
  46. Organisation for Economic Co-operation and Development (2008) OECD environmental data: compendium 2006–2008. OECD, ParisGoogle Scholar
  47. Ott C, Rechberger H (2012) The European phosphorus balance. Resour Conserv Recycl 60:159–172CrossRefGoogle Scholar
  48. Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B Biol Sci 365(1554):3065–3081CrossRefGoogle Scholar
  49. Petzet S, Cornel P (2010) Recycling of Phosphorus from Sewage Sludge—Options in Germany, Sonderausgaben Wasser und Abfall 1:34–36Google Scholar
  50. Petzet S, Cornel P (2011) Towards a complete recycling of phosphorus in wastewater treatment—options in Germany. Water Sci Technol 64(1):29–35CrossRefGoogle Scholar
  51. Petzet S, Peplinski B, Cornel P (2012) On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res. doi:10.1016/j.watres.2012.1003.1068 Google Scholar
  52. Phosphorus Recycling Promotion Council of Japan (2008) Establishment of the phosphorus recycling promotion council of Japan. Phosphorus Recycling Promotion Council of Japan, TokyoGoogle Scholar
  53. Pierzynski GM, McDowell RW, Sims JT (2005) Chemistry, cycling, and potential movement of inorganic P in soils. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. Agronomy Monograph, vol 46, pp 53–86Google Scholar
  54. Remy C, Jekel M (2008) Sustainable wastewater management: life cycle assessment of conventional and source-separating urban sanitation systems. Water Sci Technol 58(8):1555–1562CrossRefGoogle Scholar
  55. Richards I, Dawson C (2008) Phosphorus imports, exports, fluxes and sinks in Europe. In: Society PotIF (ed). International Fertiliser SocietyGoogle Scholar
  56. Scholz RW (2011) Environmental literacy in science and society: from knowledge to decisions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  57. Schoumans OF, Rulkens WH, Oenema O, Ehlert PAI (2010) Phosphorus recovery from animal manure: technical opportunities and agro-economical perspectives. Alterra report 2158, Alterra, Wageningen, The NetherlandsGoogle Scholar
  58. Selman M, Greenhalgh S, Diaz R, Sugg Z (2008) Eutrophication and hypoxia in coastal areas: a global assessment of the state of knowledge, eutrophication and hypoxia in coastal areas: a global assessment of the state of knowledge. World Resources Institute, WashingtonGoogle Scholar
  59. Shakhramanyan N, Schneider UA, McCarl BA, Lang DJ, Schmid E (2012) The impacts of higher mineral phosphorus prices and externality taxation on the use of organic phosphorus sources in US agriculture. Working Paper IETSR-1, Institute of Ethics and Transdisciplinary Sustainability Research, University of Lüneburg, GermanyGoogle Scholar
  60. Shiroyama H, Yarime M, Matsuo M, Schroeder H, Scholz RW, Ulrich AE (2012) Governance for sustainability: knowledge integration and multi-actor dimensions in risk management. Sustain Sci 7(1):45–55CrossRefGoogle Scholar
  61. Smit AL, Bindraban PS, Schröder JJ, Conijn JG, van der Meer HG (2009) Phosphorus in agriculture: global resources, trends and developments. Report to the Steering Committee Technology Assessment of the Ministry of Agriculture, Nature and Food Quality, The Netherlands, in collaboration with the Nutrient Flow Task Group (NFTG), supported by Development Policy Review Network (DPRN). Wageningen Plant research International B.V., WageningenGoogle Scholar
  62. Someus E (2009) PROTECTOR—Recycling and upgrading of bone meal for environmentally friendly crop protection and nutrition. Final ReportGoogle Scholar
  63. Sustainable P Initiative (2013) Sustainable phosphorus research coordination network. Sustainable P Initiative. http://sustainablep.asu.edu/prcn. Accessed 19 Aug 2013
  64. Sustainable Sanitation Alliance (2010) Urine and faecal wastewater separation at GTZ main office building, Eschborn, Germany. http://www.susana.org/docs_ccbk/susana_download/2-63-en-susana-cs-germany-eschbornhouse-1-2009.pdf
  65. Trencher G, Yarime M, McCormick KB, Doll CNH, Kraines SB (2013) Beyond the third mission: exploring the emerging university function of co-creation for sustainability. Science and Public Policy. doi:10.1093/scipol/sct044 Google Scholar
  66. U.S. Geological Survey (2012) Mineral commodity summaries 2012. U.S. Geological SurveyGoogle Scholar
  67. Ulrich AE, Malley DF, Voora V (2009) Peak phosphorus. Opportunity in the making. International Institute for Sustainable Development, WinnipegGoogle Scholar
  68. United States Food and Drug Administration (2008) Substances prohibited from use in animal food or feed. 21 CFR Part 589Google Scholar
  69. Vinnerås B (2001) Faecal separation and urine diversion for nutrient management of household biodegradable waste and wastewater. Licentiate thesis, Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  70. Vinneras B, Jonsson H (2002) The performance and potential of faecal separation and urine diversion to recycle plant nutrients in household wastewater. Bioresour Technol 84(3):275–282CrossRefGoogle Scholar
  71. Wajima T, Haga M, Kuzawa K, Ishimoto H, Tamada O, Ito K, Nishiyama T, Downs RT, Rakovan JF (2006) Zeolite synthesis from paper sludge ash at low temperature (90 °C) with addition of diatomite. J Hazard Mater 132:244–252CrossRefGoogle Scholar
  72. Willer H, Kilcher L (2012) The world of organic agriculture—statistics and emerging trends 2012. Research Institute of Organic Agriculture (FiBL), Frick, and International Federation of Organic Agriculture Movements (IFOAM), BonnGoogle Scholar
  73. Winker M (2010) Are pharmaceutical residues in urine a constraint for using urine as a fertilizer? Sustain Sanitation Pract 3:18–24Google Scholar
  74. Winker M, Vinnerås B, Muskolus A, Arnold U, Clemens J (2009) Fertiliser products from new sanitation systems: their potential values and risks. Bioresour Technol 100(18):4090–4096CrossRefGoogle Scholar
  75. World Resources Institute (2012) Eutrophication and hypoxia: nutrient pollution in coastal waters. World Resources Institute, Washington. http://www.wri.org/project/eutrophication. Accessed 27 May 2012
  76. Yarime M, Trencher G, Mino T, Scholz RW, Olsson L, Ness B, Frantzeskaki N, Rotmans J (2012) Establishing sustainability science in higher education institutions: towards an integration of academic development, institutionalization, and stakeholder collaborations. Sustain Sci 7(1):101–113CrossRefGoogle Scholar
  77. Zalouk S, Barbati S, Sergent M, Ambrosio M (2009) Disposal of animal by-products by wet air oxidation: performance optimization and kinetics. Chemosphere 74:193–199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Masaru Yarime
    • 1
  • Cynthia Carliell-Marquet
    • 2
  • Deborah T. Hellums
    • 3
  • Yuliya Kalmykova
    • 4
  • Daniel J. Lang
    • 5
  • Quang Bao Le
    • 6
  • Dianne Malley
    • 7
  • Leo S. Morf
    • 8
  • Kazuyo Matsubae
    • 9
  • Makiko Matsuo
    • 10
  • Hisao Ohtake
    • 11
  • Alan P. Omlin
    • 1
  • Sebastian Petzet
    • 12
  • Roland W. Scholz
    • 13
    • 6
  • Hideaki Shiroyama
    • 14
  • Andrea E. Ulrich
    • 6
  • Paul Watts
    • 7
  1. 1.University of Tokyo, Graduate School of Public PolicyBunkyo-kuJapan
  2. 2.University of BirminghamBirminghamUK
  3. 3.International Fertilizer Development Center (IFDC)Muscle ShoalsUSA
  4. 4.Civil and Environmental EngineeringChalmers University of TechnologyGothenburgSweden
  5. 5.Leuphana University of LüneburgLüneburgGermany
  6. 6.ETH ZürichNatural and Social Science Interface (NSSI)ZürichSwitzerland
  7. 7.PDK ProjectsNanaimoCanada
  8. 8.Abfall, Wasser, Luft und Energie (AWEL)ZürichSwitzerland
  9. 9.Tohoku UniversitySendai CityJapan
  10. 10.The University of TokyoBunkyo-kuJapan
  11. 11.Osaka UniversitySuitaJapan
  12. 12.Technische Universität DarmstadtDarmstadtGermany
  13. 13.Fraunhofer Project Group Materials Recycling and Resource Strategies IWKSAlzenauGermany
  14. 14.Graduate School of Public PolicyThe University of TokyoBunkyo-kuJapan

Personalised recommendations