Advertisement

Supersymmetric Dark Matter at XENON100 and the LHC: No-Scale \( \mathcal{F} \) -SU(5) Stringy Correlations

  • Tianjun Li
  • James A. Maxin
  • Dimitri V. Nanopoulos
  • Joel W. Walker
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 148)

Abstract

We complete an investigation of the observable signatures of No-Scale flipped SU(5) × U(1) X grand unified theory with TeV-scale vector-like particles (No-Scale \( \mathcal{F} \)-SU(5)) at the LHC and dark matter direct detection experiments. We feature a dark matter candidate which is over 99 % bino due to a comparatively large Higgs bilinear mass μ term around electroweak scale, and hence automatically satisfy the present constraints from the XENON100 and CDMS/EDELWEISS experiments. We do however expect that the continued XENON100 run and extension to 1-ton may begin to probe our model. Similarly, our model is also currently under probe by the LHC through a search for events with ultra-high multiplicity hadronic jets, which are a characteristic feature of the distinctive No-Scale \( \mathcal{F} \)-SU(5) mass hierarchy.

Keywords

Dark Matter Large Hadron Collider SUSY Breaking Mass Hierarchy Gaugino Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported in part by the DOE grant DE-FG03-95-Er-40917 (TL and DVN), by the Natural Science Foundation of China under grant numbers 10821504 and 11075194 (TL), by the Mitchell-Heep Chair in High Energy Physics (JAM), and by the Sam Houston State University 2011 Enhancement Research Grant program (JWW).

References

  1. 1.
    Aprile, E., et al. (XENON100): Dark matter results from 100 live days of XENON100 data. Phys. Rev. Lett. 107, 131302 (2011)Google Scholar
  2. 2.
    CDMS: Combined limits on WIMPs from the CDMS and EDELWEISS experiments. Phys. Rev. D 84, 011102 (2011)Google Scholar
  3. 3.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: The Golden point of no-scale and no-parameter \( \mathcal{F} \)-SU(5). Phys. Rev. D83, 056015 (2011), 1007.5100ADSGoogle Scholar
  4. 4.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: The golden strip of correlated top quark, gaugino, and vectorlike mass in no-scale, no-parameter F-SU(5). Phys. Lett. B699, 164 (2011), 1009.2981ADSCrossRefGoogle Scholar
  5. 5.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Super no-scale \( \mathcal{F} \)-SU(5): resolving the gauge hierarchy problem by dynamic determination of M 1/2 and tan β. Phys. Lett. B 703, 469 (2011), 1010.4550ADSCrossRefGoogle Scholar
  6. 6.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Blueprints of the no-scale multiverse at the LHC. Phys. Rev. D84, 056016 (2011), 1101.2197ADSGoogle Scholar
  7. 7.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Ultra high jet signals from stringy no-scale super-gravity (2011), 1103.2362Google Scholar
  8. 8.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: The ultrahigh jet multiplicity signal of stringy no-scale \( \mathcal{F} \)-SU(5) at the \( \sqrt{s}\) = 7 TeV LHC. Phys. Rev. D84, 076003 (2011), 1103.4160ADSGoogle Scholar
  9. 9.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: The unification of dynamical determination and bare minimal phenomenological constraints in no-scale F-SU(5). Phys. Rev. D85, 056007 (2012), 1105.3988ADSGoogle Scholar
  10. 10.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: A two-tiered correlation of dark matter with missing transverse energy: reconstructing the lightest super-symmetric particle mass at the LHC. J. High Energy Phys. 02, 129 (2012), 1107.2375ADSCrossRefGoogle Scholar
  11. 11.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Prospects for discovery of supersymmetric no-scale F-SU(5) at the once and future LHC. Nucl. Phys. B859, 96 (2012), 1107.3825ADSCrossRefGoogle Scholar
  12. 12.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Has SUSY gone undetected in 9-jet events? A tenfold enhancement in the LHC signal efficiency (2011), 1108.5169Google Scholar
  13. 13.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Natural predictions for the Higgs boson mass and supersymmetric contributions to rare processes. Phys. Lett. B708, 93 (2012), 1109.2110ADSCrossRefGoogle Scholar
  14. 14.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: The F-landscape: dynamically determining the multiverse. Int. J. Mod. Phys. A27, 1250121 (2012), 1111.0236MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Profumo di SUSY: suggestive correlations in the AT-LAS and CMS high jet multiplicity data (2011), 1111.4204Google Scholar
  16. 16.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: A Higgs mass shift to 125 GeV and a multi-jet super-symmetry signal: miracle of the flippons at the \( \sqrt{s} \) = 7 TeV LHC. Phys. Lett. B710, 207 (2012), 1112.3024ADSCrossRefGoogle Scholar
  17. 17.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Testing no-scale \( \mathcal{F} \)-SU(5): a 125 GeV Higgs boson and SUSY at the 8 TeV LHC. Phys. Lett. B 718, 70–74 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: A 125.5 GeV Higgs boson in \( \mathcal{F} \)-SU(5): imminently observable proton decay, a 130 GeV gamma-ray line, and SUSY multijets & light stops at the LHC8. Eur. Phys. J. C 72, 2246 (2012)Google Scholar
  19. 19.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: A multi-axis best fit to the collider supersymmetry search: the aroma of stops and gluinos at the \( \sqrt{s}\) = 7 TeV LHC (2012), 1203.1918Google Scholar
  20. 20.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Chanel N o5(fb−1): the sweet fragrance of SUSY (2012), 1205.3052Google Scholar
  21. 21.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Non-trivial supersymmetry correlations between ATLAS and CMS observations (2012), 1206.0293Google Scholar
  22. 22.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Correlating LHCb \( {B}_{s}^{0}\)μ + μ results with the ATLAS-CMS multijet supersymmetry search. Europhys. Lett. 100, 21001 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Barr, S.M.: A new symmetry breaking pattern for SO(10) and proton decay. Phys. Lett. B112, 219 (1982)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Derendinger, J.P., Kim, J.E., Nanopoulos, D.V.: Anti-SU(5). Phys. Lett. B139, 170 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    Antoniadis, I., Ellis, J.R., Hagelin, J.S., Nanopoulos, D.V.: Supersymmetric flipped SU(5) revitalized. Phys. Lett. B194, 231 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    Jiang, J., Li, T., Nanopoulos, D.V.: Testable flipped SU(5) × U(1)X models. Nucl. Phys. B772, 49 (2007), hep-ph/0610054ADSCrossRefGoogle Scholar
  27. 27.
    Jiang, J., Li, T., Nanopoulos, D.V., Xie, D.: F-SU(5). Phys. Lett. B677, 322 (2009)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Jiang, J., Li, T., Nanopoulos, D.V., Xie, D.: Flipped SU(5) × U(1)X models from F-theory. Nucl. Phys. B830, 195 (2010), 0905.3394MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Li, T., Nanopoulos, D.V., Walker, J.W.: Elements of F-ast proton decay. Nucl. Phys. B846, 43 (2011), 1003.2570ADSCrossRefGoogle Scholar
  30. 30.
    Li, T., Maxin, J.A., Nanopoulos, D.V., Walker, J.W.: Dark matter, proton decay and other phenomenological constraints in F-SU(5). Nucl. Phys. B848, 314 (2011), 1003.4186ADSCrossRefGoogle Scholar
  31. 31.
    Cremmer, E., Ferrara, S., Kounnas, C., Nanopoulos, D.V.: Naturally vanishing cosmological constant in N = 1 supergravity. Phys. Lett. B133, 61 (1983)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Ellis, J.R., Lahanas, A.B., Nanopoulos, D.V., Tamvakis, K.: No-scale supersymmetric standard model. Phys. Lett. B134, 429 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    Ellis, J.R., Kounnas, C., Nanopoulos, D.V.: Phenomenological SU(1, 1) supergravity. Nucl. Phys. B241, 406 (1984)ADSCrossRefGoogle Scholar
  34. 34.
    Ellis, J.R., Kounnas, C., Nanopoulos, D.V.: No scale supersymmetric guts. Nucl. Phys. B247, 373 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    Lahanas, A.B., Nanopoulos, D.V.: The road to no scale supergravity. Phys. Rep. 145, 1 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    Nanopoulos, D.V.: F-enomenology. In: 1st International Conference on String Phenomenology, Oxford, England, 6–11 July 2002, and NeSS 2002, Washington, DC, USA, 19–21 September 2002 (2002)Google Scholar
  37. 37.
    Witten, E.: Dimensional reduction of superstring models. Phys. Lett. B155, 151 (1985)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Li, T.-j., Lopez, J.L., Nanopoulos, D.V.: Compactifications of M theory and their phenomenological consequences. Phys. Rev. D56, 2602 (1997), hep-ph/9704247ADSGoogle Scholar
  39. 39.
    Ellis, J.R., Nanopoulos, D.V., Olive, K.A.: Lower limits on soft supersymmetry breaking scalar masses. Phys. Lett. B525, 308 (2002), arXiv:0109288ADSCrossRefGoogle Scholar
  40. 40.
    Ellis, J., Mustafayev, A., Olive, K.A.: Resurrecting no-scale supergravity phenomenology. Eur. Phys. J. C69, 219 (2010), 1004.5399ADSCrossRefGoogle Scholar
  41. 41.
    Okada, Y., Yamaguchi, M., Yanagida, T.: Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model. Prog. Theor. Phys. 85, 1 (1991)ADSCrossRefGoogle Scholar
  42. 42.
    Okada, Y., Yamaguchi, M., Yanagida, T.: Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model. Phys. Lett. B262, 54 (1991)ADSCrossRefGoogle Scholar
  43. 43.
    Haber, H.E., Hempfling, R.: Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)? Phys. Rev. Lett. 66, 1815 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    Ellis, J.R., Ridolfi, G., Zwirner, F.: Radiative corrections to the masses of supersymmetric Higgs bosons. Phys. Lett. B257, 83 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    Ellis, J.R., Ridolfi, G., Zwirner, F.: On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches. Phys. Lett. B262, 477 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    Komatsu, E., et al. (WMAP): Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2010), 1001.4538Google Scholar
  47. 47.
    Aprile, E., et al. (XENON100 Collaboration): Dark matter results from 225 live days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tianjun Li
    • 1
    • 2
  • James A. Maxin
    • 3
  • Dimitri V. Nanopoulos
    • 2
    • 4
    • 5
  • Joel W. Walker
    • 6
  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.George P. and Cynthia W. Mitchell Institute for Fundamental Physics and AstronomyTexas A & M UniversityCollege StationUSA
  3. 3.Department of Physics and AstronomyBall State UniversityMuncieIndiana
  4. 4.Astroparticle Physics GroupHouston Advanced Research Center (HARC)WoodlandsUSA
  5. 5.Division of Natural SciencesAcademy of AthensAthensGreece
  6. 6.Department of PhysicsSam Houston State UniversityHuntsvilleUSA

Personalised recommendations