Skip to main content

Finite Temperature Density Profile in SFDM

  • Conference paper
  • First Online:
Sources and Detection of Dark Matter and Dark Energy in the Universe

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 148))

Abstract

Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in high mass LSB galaxies remains unclear. Additionally, including too much feedback in the simulations is a double-edged sword, in order to obtain a cored DM distribution from an initially cuspy one, feedback recipes require to remove a large quantity of baryons from the center of galaxies, however, other feedback recipes produce twice more satellite galaxies of a given luminosity and with much smaller mass to light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that the dark matter is an auto-interacting real scalar field in a thermal bath of temperature T with an initial Z 2 symmetric potential, as the universe expands the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system and show both, that it satisfies the two desired requirements and that the rotation curve profile is not longer universal.

Subject headings: galaxies:formation–galaxies:halos–galaxies:individual (NGC 1003, NGC 1560, NGC 6946)–galaxies:fundamental parameters

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balakrishna, J., Seidel, E., Suen, W.-M.: Dynamical evolution of boson stars. II. Excited states and self interacting fields. Phys. Rev. D 58, 104004 (1998)

    Google Scholar 

  2. Bernal, A., Barranco, J., Alic, D., Palenzuela, C.: Multi-state boson star as a dark matter halo. AIP Conf. Proc. 1083, 20–27 (2010)

    Google Scholar 

  3. Böhmer, C.G., Harko, T.: Can Dark Matter be a Bose-Einstein condensate? J. Cosmol. Astropart. Phys. 06, 025 (2007)

    Article  Google Scholar 

  4. Broeils, A.H.: The mass distribution of the dwarf spiral NGC 1560. Astron. Astrophys. 256, 19 (1992)

    ADS  Google Scholar 

  5. Chavanis, P.H.: Mass radius relation of newtonian self gravitating Bose-Einstein condensates with short range interactions. I. Analytical results. Phys. Rev. D 84, 043531 (2011)

    Article  ADS  Google Scholar 

  6. Colpi, M., Shapiro, S.L., Wasserman, I.: Boson stars. Gravitational equilibria of self interacting scalar fields. Phys. Rev. Lett. 57, 2485 (1986)

    Google Scholar 

  7. Dalfovo, F., Giorgino, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  8. Famaey, B., McGaugh, S.S.: Living Rev. Relativ. 15, 10 (2012), URL (cited on 26 September 2012):http://www.livingreviews.org/lrr-2012-10

  9. Gentile, G., Tonini, C., Salucci, P.: LAMBDA CDM halo density profiles: where do actual halos converge to NFW ones? Astron. Astrophys. 467, 925 (2007)

    Article  ADS  Google Scholar 

  10. Gleiser, M.: Stability of boson stars. Phys. Rev. D 38, 2376 (1988)

    Article  ADS  Google Scholar 

  11. Governato, F., Zolotov, A., Pontzen, A., et al.: Cuspy no more: how outflows affect the central dark matter and baryon distribution in Lambda cold dark matter galaxies. Mon. Not. R. Astron. Soc. 422, 1231 (2012)

    Article  ADS  Google Scholar 

  12. Guzmán, F.S., Matos, T.: Scalar fields as dark matter in spiral galaxies. Class. Quantum Gravity 17, L9 (2000)

    Article  ADS  MATH  Google Scholar 

  13. Harko, T.: Evolution of cosmological perturbations in Bose–Einstein condensate dark matter. Mon. Not. R. Astron. Soc. 413, 3095 (2011)

    Article  ADS  Google Scholar 

  14. Harko, T., Madarassy, E.J.M.: Finite temperature effects in Bose-Einstein Condensed dark matter halos. J. Cosmol. Astropart. Phys. 01, 020 (2011)

    ADS  Google Scholar 

  15. Hu, W., Barkana, R., Gruzinov, A.: Fuzzy cold dark matter: the wave properties of ultralight particles. Phys. Rev. Lett. 85, 1158 (2000)

    Article  ADS  Google Scholar 

  16. Jin, Y.P., Suto, Y.: The density profiles of the dark matter halo are not universal. Astrophys. J. 529, L69 (2000)

    Article  ADS  Google Scholar 

  17. Kolb, E., Turner, M.: The Early Universe. Addison-Wesley, Redwood city (1990) [updated paperback edition 1994]

    MATH  Google Scholar 

  18. Magaña, J., Matos, T., Robles, V.H., Suárez, A.: A brief review of the scalar field dark matter model. In: Proceedings of the XIII Mexican School of Particles and Fields and Mini-courses of the XIII Mexican School of Particles and Fields, Hermosillo and San Carlos, Sonora, Mexico, 2–11 October 2008 (2012)

    Google Scholar 

  19. Magaña, J., Matos, T., Suárez, A., Sánchez-Salcedo, F.J.: Structure formation with scalar field dark matter: the field approach. J. Cosmol. Astropart. Phys. 2012(10), 003 (2012)

    Article  Google Scholar 

  20. Matos, T., Ureña-López, L.A.: Further analysis of a cosmological model with quintessence and scalar dark matter. Phys. Rev. D 63, 063506 (2001)

    Article  ADS  Google Scholar 

  21. McGaugh, S.S.: The Baryonic Tully-Fisher relation of galaxies with extended rotation curves and the Stellar Mass of rotating galaxies. Astrophys. J. 632, 859 (2005)

    Article  ADS  Google Scholar 

  22. Merrit, D., Graham, A.W., Moore, B., Diemand, J., Terzić, B.: Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models. Astrophys. J. 132, 2685 (2006)

    Google Scholar 

  23. Navarro, J.F., Ludlow, A., Springel, V., et al.: The diversity and similarity of simulated cold dark matter haloes. Mon. Not. R. Astron. Soc. 402, 21 (2010)

    Article  ADS  Google Scholar 

  24. Robles, V.H., Matos, T.: Flat central density profile and constant dark matter surface density in galaxies from scalar field dark matter. Mon. Not. R. Astron. Soc. 422, 282 (2012)

    Article  ADS  Google Scholar 

  25. Sin, S.J.: Late-time phase transition and the galactic halo as a Bose liquid. Phys. Rev. D 50, 3650 (1994)

    Article  ADS  Google Scholar 

  26. Suárez, A., Matos, T.: Structure formation with scalar-field dark matter: the fluid Approach. Mon. Not. R. Astron. Soc. 416, 87 (2011)

    ADS  Google Scholar 

  27. Valdez, A.S., Becerril, R., Ureña-López, L.A.: Equilibrium configuration of φ4 oscillations. In: Gravitational Physics: Testing Gravity From Submillimeter To Cosmic: Proceedings of the VIII Mexican School on Gravitation and Mathematical Physics. AIP Conference Proceedings, vol. 1256, pp. 357–361 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Robles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Robles, V.H., Matos, T. (2013). Finite Temperature Density Profile in SFDM. In: Cline, D. (eds) Sources and Detection of Dark Matter and Dark Energy in the Universe. Springer Proceedings in Physics, vol 148. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7241-0_2

Download citation

Publish with us

Policies and ethics