Radiative Natural Supersymmetry with Mixed Axion/Higgsino Cold Dark Matter

  • Howard Baer
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 148)


Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light higgsinos \( <\sim 200 \) GeV and light top squarks \( <\sim 500 \) GeV along with very heavy squarks and TeV-scale gluinos. Such models have low electroweak finetuning and are safe from LHC searches. However, in the context of the MSSM, they predict too low a value of m h and the relic density of thermally produced higgsino-like WIMPs falls well below dark matter (DM) measurements. Allowing for high scale soft SUSY breaking Higgs mass m H u > m 0 leads to natural cancellations during RG running, and to radiatively induced low finetuning at the electroweak scale. This model of radiative natural SUSY (RNS), with large mixing in the top squark sector, allows for finetuning at the 5–10 % level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. If the strong CP problem is solved via the PQ mechanism, then we expect an axion-higgsino admixture of dark matter, where either or both the DM particles might be directly detected.


Dark Matter Weak Scale Benchmark Point Generation Squarks Natural Supersymmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



 I thank my collaborators Vernon Barger, P. Huang, A. Lessa, D. Mickelson, A. Mustafayev, S. Rajagopalan, W. Sreethawong and X. Tata. HB would like to thank the Center for Theoretical Underground Physics (CETUP) for hospitality while this work was completed. This work was supported in part by the US Department of Energy, Office of High Energy Physics.


  1. 1.
    Aad, G., et al. [ATLAS Collaboration]: Phys. Lett. B 716, 1 (2012)Google Scholar
  2. 2.
    Chatrchyan, S., et al. [CMS Collaboration]: Phys. Lett. B 716, 30 (2012)Google Scholar
  3. 3.
    Carena, M.S., Haber, H.E.: Higgs boson theory and phenomenology. Prog. Part. Nucl. Phys. 50, 63 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Aad, G., et al. (ATLAS collaboration): Phys. Lett. B 710, 67 (2012)Google Scholar
  5. 5.
    Chatrchyan, S., et al. (CMS collaboration): Phys. Rev. Lett. 107, 221804 (2011)Google Scholar
  6. 6.
    Kitano, R., Nomura, Y.: Phys. Lett. B 631, 58 (2005); Phys. Rev. D 73, 095004 (2006)Google Scholar
  7. 7.
    Arkani-Hamed, N.: Talk at WG2 meeting, CERN, Geneva, 31 October 2012Google Scholar
  8. 8.
    Papucci, M., Ruderman, J.T., Weiler, A.: J. High Energy Phys. 1209, 035 (2012); Brust, C., Katz, A., Lawrence, S., Sundrum, R.: J. High Energy Phys. 1203, 103 (2012); Essig, R., Izaguirre, E., Kaplan, J., Wacker, J.G.: J. High Energy Phys. 1201, 074 (2012)Google Scholar
  9. 9.
    Baer, H., Barger, V., Huang, P., Tata, X.: Natural supersymmetry: LHC, dark matter and ILC searches. J. High Energy Phys. 1205, 109 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Baer, H., Barger, V., Mustafayev, A.: Phys. Rev. D 85, 075010 (2012); Baer, H., Barger, V., Huang, P., Mustafayev, A.: Phys. Rev. D 84, 091701 (2011)Google Scholar
  11. 11.
    Hall, L., Pinner, D., Ruderman, J.: A natural SUSY higgs near 126 GeV. J. High Energy Phys. 1204, 131 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Baer, H., Barger, V., Huang, P.: Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider. J. High Energy Phys. 1111, 031 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    King, S.F., Muhlleitner, M., Nevzorov, R.: Nucl. Phys. B 860, 207 (2012); Gunion, J.F., Jiang, Y., Kraml, S.: Phys. Lett. B 710, 454 (2012); Bae, K.J., Choi, K., Chun, E.J., Im, S.H., Park, C.B., Shin, C.S.: arXiv:1208.2555 [hep-ph]Google Scholar
  14. 14.
    Martin, S.P.: Phys. Rev. D 81, 035004 (2010); Phys. Rev. D 82, 055019 (2010); Bae, K.J., Jung, T.H., Kim, H.D.: arXiv:1208.3748 [hep-ph]Google Scholar
  15. 15.
    Bagger, J., Poppitz, E., Randall, L.: Destabilizing divergences in supergravity theories at two loops. Nucl. Phys. B 455, 59 (1995)MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Aad, G., ATLAS Collaboration, et al.: Search for light top squark pair production in final states with leptons and b jets with the ATLAS detector in=7 TeV proton-proton collisions. Phys. Lett. B 720, 13 (2013) [arXiv:1209.2102 [hep-ex]]Google Scholar
  17. 17.
    Chan, K.L., Chattopadhyay, U., Nath, P.: Phys. Rev. D 58, 096004 (1998); Feng, J., Matchev, K., Moroi, T.: Phys. Rev. Lett. 84, 2322 (2000); Phys. Rev. D 61, 075005 (2000); see also Baer, H., Chen, C.H., Paige, F., Tata, X.: Phys. Rev. D 52, 2746 (1995); Phys. Rev. D 53, 6241 (1996); Baer, H., Chen, C.H., Drees, M., Paige, F., Tata, X.: Phys. Rev. D 59, 055014 (1999); for a model-independent approach, see Baer, H., Krupovnickas, T., Profumo, S., Ullio, P.: J. High Energy Phys. 0510, 020 (2005)Google Scholar
  18. 18.
    Lebedev, O., Nilles, H.P., Ratz, M.: A Note on fine-tuning in mirage mediation. hep-ph/0511320Google Scholar
  19. 19.
    Baer, H., Barger, V., Mustafayev, A.: Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs Scalar. J. High Energy Phys. 1205, 091 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Baer, H., Barger, V., Huang, P., Mickelson, D., Mustafayev, A., Tata, X.: Post-LHC7 fine-tuning in the mSUGRA/CMSSM model with a 125 GeV Higgs boson. Phys. Rev. D 87, 3, 035017 (2013). [arXiv:1210.3019]Google Scholar
  21. 21.
    Kane, G.L., Lykken, J.D., Nelson, B.D., Wang, L.-T.: Reexamination of electroweak symmetry breaking in supersymmetry and implications for light superpartners. Phys. Lett. B 551, 146 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Ellis, J., Olive, K., Santoso, Y.: Phys. Lett. B 539, 107 (2002); Ellis, J., Falk, T., Olive, K., Santoso, Y.: Nucl. Phys. B 652, 259 (2003); Baer, H., Mustafayev, A., Profumo, S., Belyaev, A., Tata, X.: J. High Energy Phys. 0507, 065 (2005)Google Scholar
  23. 23.
    Baer, H., Mustafayev, A., Profumo, S., Belyaev, A., Tata, X.: Neutralino cold dark matter in a one parameter extension of the minimal supergravity model. Phys. Rev. D 71, 095008 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Gabbiani, F., Gabrielli, E., Masiero, A., Silvestrini, L.: A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model. Nucl. Phys. B 477, 321 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Arnowitt, R., Nath, P.: Loop corrections to radiative breaking of electroweak symmetry in supersymmetry. Phys. Rev. D 46, 3981 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    Baer, H., Barger, V., Huang, P., Mickelson, D., Mustafayev, A., Tata, X.: Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass. Phys. Rev. D 87, 115028 (2013) [arXiv:1212.2655 [hep-ph]]Google Scholar
  27. 27.
    Baer, H., Barger, V., Huang, P., Mustafayev, A., Tata, X.: Radiative natural SUSY with a 125 GeV Higgs boson. Phys. Rev. Lett. 109, 161802 (2012) [arXiv:1207.3343 [hep-ph]]Google Scholar
  28. 28.
    Paige, E.F., Protopopescu, S.D., Baer, H., Tata, X.: ISAJET 7.69: A Monte Carlo event generator for pp, anti-p p, and e +e- reactions. hep-ph/0312045Google Scholar
  29. 29.
    Haber, H., Hempfling, R.: The Renormalization group improved Higgs sector of the minimal supersymmetric model. Phys. Rev. D 48, 4280 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    Baer, H., Barger, V., Lessa, A., Tata, X.: J. High Energy Phys. 1006, 102 (2010); Phys. Rev. D 85, 051701 (2012)Google Scholar
  31. 31.
    Baer, H., Barger, V., Lessa, A., Sreethawong, W., Tata, X.: Wh plus missing-E_T signature from gaugino pair production at the LHC. Phys. Rev. D 85, 055022 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Baer, H., List, J.: Post LHC7 SUSY benchmark points for ILC physics. arXiv:1205.6929 [hep-ph]Google Scholar
  33. 33.
    Acharya, B.S., Kane, G., Kuflik, E.: String theories with moduli stabilization imply non-thermal cosmological history, and particular dark matter. arXiv:1006.3272 [hep-ph]Google Scholar
  34. 34.
    Moroi, T., Randall, L.: Nucl. Phys. B 570, 455 (2000); Gelmini, G., Gondolo, P.: Phys. Rev. D 74, 023510 (2006); Gelmini, G., Gondolo, P., Soldatenko, A., Yaguna, C.: Phys. Rev. D 74, 083514 (2006); Gelmini, G., Gondolo, P., Soldatenko, A., Yaguna, C.: Phys. Rev. D 76, 015010 (2007); Acharya, B., Bobkov, K., Kane, G., Kumar, P., Shao, J.: Phys. Rev. D 76, 126010 (2007); Phys. Rev. D 78, 065038 (2008); Acharya, B., Kumar, P., Bobkov, K., Kane, G., Shao, J., Watson, S.: J. High Energy Phys. 0806, 064 (2008)Google Scholar
  35. 35.
    Choi, K.-Y., Kim, J.E., Lee, H.M., Seto, O.: Neutralino dark matter from heavy axino decay. Phys. Rev. D 77, 123501 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Baer, H., Lessa, A., Rajagopalan, S., Sreethawong, W.: Mixed axion/neutralino cold dark matter in supersymmetric models. J. Cosmol. Astropart. Phys. 1106, 031 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Baer, H., Lessa, A., Sreethawong, W.: Coupled Boltzmann calculation of mixed axion/neutralino cold dark matter production in the early universe. J. Cosmol. Astropart. Phys. 1201, 036 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of OklahomaNormanUSA

Personalised recommendations