Advertisement

Framework Comparison Between a Multifingered Hand and a Parallel Manipulator

  • Júlia Borràs
  • Aaron M. Dollar
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

In this paper we apply the kineto-static mathematical models commonly used for robotic hands and for parallel manipulators to an example of hand-plus-object (parallel manipulator) with three fingers (legs), each with two phalanges (links). The obtained analytical matrix expressions that define the velocity and static equations in both frameworks are shown to be equivalent. This equivalence clarifies the role of the grasp matrix versus the parallel manipulator Jacobian. Potential knowledge transfer between both fields is discussed in the last section.

Keywords

Parallel mechanisms Multifingered robotic hands Screw theory. 

Notes

Acknowledgments

This work was supported in part by National Science Foundation grant IIS-0952856.

References

  1. 1.
    Bohigas, O., Manubens, M., Ros, L.: A complete method for workspace boundary determination on general structure manipulators. IEEE Trans. Robot. 28(5), 993–1006 (2012)CrossRefGoogle Scholar
  2. 2.
    Cui, L., Dai, J.S.: Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand. J. Mech. Robot. 4(3), 034,502 (2012)Google Scholar
  3. 3.
    Dai, J.S., Jones, J.: Interrelationship between screw systems and corresponding reciprocal systems and applications. Mech. Mach. Theory 36, 743–761 (2001)Google Scholar
  4. 4.
    Ebert-Uphoff, I., Voglewede, P.A.: On the connections between cable-driven robots, parallel manipulators and grasping. In: IEEE International Conference on Robotics and Automation, pp. 4521–4526 (2004)Google Scholar
  5. 5.
    Gosselin, C., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE Trans. Robot. Autom. 6(3), 281–290 (1990)CrossRefGoogle Scholar
  6. 6.
    Kerr, J., Roth, B.: Analysis of multifingered hands. Int. J. Robot. Res. 4(3), 3–17 (1986)CrossRefGoogle Scholar
  7. 7.
    Merlet, J.-P.: Singular configurations of parallel manipulators and Grassmann geometry. Int. J. Robot. Res 8(5), 45–56 (1989)CrossRefGoogle Scholar
  8. 8.
    Merlet, J-P.: Parallel robots, second edition edn. Springer, New York (2006)Google Scholar
  9. 9.
    Mohamed, M., Duffy, J.: A direct determination of the instantaneous kinematics of fully parallel robot manipulators. J. Mech. Trans. Autom. Des. 107, 226–229 (1985)CrossRefGoogle Scholar
  10. 10.
    Montana, D.J.: The kinematics of multi-fingered manipulation. IEEE Trans. Robot. Autom. 11(4), 491–503 (1995)CrossRefGoogle Scholar
  11. 11.
    Odhner, L.U., Dollar, A.M.: Dexterous manipulation with underactuated elastic hands. In: IEEE International Conference on Robotics and Automation, pp. 5254–5260 (2011)Google Scholar
  12. 12.
    Prattichizzo, D., Trinkle, J.C.: Grasping. In: Siciliano, B., Khatib, O., (eds.) Springer handbook of robotics, chap. 28, pp. 671–700. Springer, New york (2008)Google Scholar
  13. 13.
    Salisbury, J.K., Craig, J.J.: Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)CrossRefGoogle Scholar
  14. 14.
    Shimoga, K.B.: Robot grasp synthesis algorithms: a survey. Int. J. Robot. Res. 15(3), 230–266 (1996)CrossRefGoogle Scholar
  15. 15.
    Staffetti, E., Thomas, F.: Analysis of rigid body interactions for compliant motion tasks using the Grassmann-Cayley algebra. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2325–2332 (2000)Google Scholar
  16. 16.
    Townsend, W.: The BarrettHand grasper—programmably flexible part handling and assembly. Indus. Robot. Int. J. 27, 181–188 (2000)CrossRefGoogle Scholar
  17. 17.
    Tsai, L.W.: Robot analysis. The mechanics of serial and parallel manipulators. Wiley, New York (1999)Google Scholar
  18. 18.
    Zhao, J., Li, B., Yang, X., Yu, H.: Geometrical method to determine the reciprocal screws and applications to parallel manipulators. Robotica 27(06), 929 (2009)CrossRefGoogle Scholar
  19. 19.
    Zlatanov, D.: Generalized singularity analysis of mechanisms. Ph.D. thesis (1998)Google Scholar
  20. 20.
    Zlatanov, D., Bonev, I., Gosselin, C.M.: Constraint singularities of parallel mechanisms. In: International Conference on Robotics and Automation, pp. 496–502 (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenUSA

Personalised recommendations