Skip to main content

On the Symmetric Molecular Conjectures

  • Conference paper
  • First Online:
Computational Kinematics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 15))

Abstract

A molecular linkage consists of a set of rigid bodies pairwise connected by revolute hinges where all hinge lines of each body are concurrent. It is an important problem in biochemistry, as well as in robotics, to efficiently analyze the motions of such linkages. The theory of generic rigidity of body-bar frameworks addresses this problem via fast combinatorial algorithms. However, recent work has shown that symmetry (a common feature of many molecular and mechanical structures) can lead to additional motions. These motions typically maintain the original symmetry of the structure throughout the path, and they can often be detected via simple combinatorial counts. In this paper, we outline how these symmetry-based mathematical counts and methods can be used to efficiently predict the motions of symmetric molecular linkages, and we numerically analyze configuration spaces supporting the symmetric Molecular Conjectures formulated herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asimov, L., Roth, B.: The rigidity of graphs. AMS 245, 279–289 (1978)

    Google Scholar 

  2. Atkins, P., Child, M., Phillips, C.: Tables for Group Theory. Oxford University Press, Oxford (1970)

    Google Scholar 

  3. Daniel, R.M., Dunn, R.V., Finney, J.L., Smith, J.C.: The role of dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct. 32, 69–92 (2003)

    Article  Google Scholar 

  4. Goodsell, D., Olson, A.: Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000)

    Article  Google Scholar 

  5. Henderson, M.E.: Multiparameter parallel search branch switching. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 15(3), 967–974 (2005)

    Google Scholar 

  6. Henderson, M.E.: Multiple parameter continuation: computing implicitly defined \(k\)-manifolds. Int. J. Bifurcat. Chaos 12(3), 451–476 (2002)

    Article  MATH  Google Scholar 

  7. Jacobs, D., Rader, A., Kuhn, L., Thorpe, M.: Protein flexibility predictions using graph theory. Proteins Struct. Funct. Genet. 44, 150–165 (2001)

    Google Scholar 

  8. Jagodzinski, F., Hardy, J., Streinu, I.: Using rigidity analysis to probe mutation-induced structural changes in proteins. J. Bioinform. Comput. Biol. 10(10), (2012)

    Google Scholar 

  9. Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. Discrete Comput. Geom. 45(4), 647–700 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lee, A., Streinu, I.: Pebble game algorihms and \((k, l)\)-sparse graphs. In: European Conference on Combinatorics, Graph Theory and Applications, Berlin pp. 181–186 (2005)

    Google Scholar 

  11. Porta, J.M., Ros, L., Bohigas, O., Manubens, M., Rosales, C., Jaillet, L.: The CUIK suite: motion analysis of closed-chain multibody systems (Submitted)

    Google Scholar 

  12. Porta, J.M., Ros, L., Thomas, F., Corcho, F., Cantó, J., Pérez, J.J.: Complete maps of molecular-loop conformational spaces. J. Comput. Chem. 28, 2170–2189 (2007)

    Article  Google Scholar 

  13. Schulze, B., Sljoka, A., Whiteley, W.: How does symmetry impact the rigidity of proteins? Phil. Trans. R. Soc. A (2013, in press)

    Google Scholar 

  14. Schulze, B.: Symmetry as a sufficient condition for a finite flex. SIAM J. Discrete Math. 24(4), 1291–1312 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schulze, B., Whiteley, W.: The orbit rigidity matrix of a symmetric framework. Discrete Comput. Geom. 46(3), 561–598 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sljoka, A.: Algorithms in rigidity theory with applications to protein flexibility and mechanical linkages. Ph.D. Thesis, York University http://www.math.yorku.ca/~adnanslj/adnanthesis.pdf (2012)

  17. Tanigawa, S.: Matroids of gain graphs in applied discrete geometry. arXiv:1207.3601 (2012)

    Google Scholar 

  18. Tay, T.S.: Rigidity of multi-graphs, linking rigid bodies in \(n\)-space. J. Comb. Theory, B 36, 95–112 (1984)

    Google Scholar 

  19. Tay, T.S., Whiteley, W.: Recent advances in generic rigidity of structures. Struct. Topol. 9, 31–38 (1985)

    Google Scholar 

  20. Whiteley, W.: Some matroids from discrete applied geometry. Contemp. Math. 197, 171–311 (1996)

    Article  MathSciNet  Google Scholar 

  21. Whiteley, W.: Counting out to the flexibility of molecules. Phys. Biol. 2, 1–11 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under project DPI2010-18449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Porta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Porta, J.M., Ros, L., Schulze, B., Sljoka, A., Whiteley, W. (2014). On the Symmetric Molecular Conjectures. In: Thomas, F., Perez Gracia, A. (eds) Computational Kinematics. Mechanisms and Machine Science, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7214-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7214-4_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7213-7

  • Online ISBN: 978-94-007-7214-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics