Advertisement

On the Symmetric Molecular Conjectures

  • Josep M. PortaEmail author
  • Lluis Ros
  • Bernd Schulze
  • Adnan Sljoka
  • Walter Whiteley
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

A molecular linkage consists of a set of rigid bodies pairwise connected by revolute hinges where all hinge lines of each body are concurrent. It is an important problem in biochemistry, as well as in robotics, to efficiently analyze the motions of such linkages. The theory of generic rigidity of body-bar frameworks addresses this problem via fast combinatorial algorithms. However, recent work has shown that symmetry (a common feature of many molecular and mechanical structures) can lead to additional motions. These motions typically maintain the original symmetry of the structure throughout the path, and they can often be detected via simple combinatorial counts. In this paper, we outline how these symmetry-based mathematical counts and methods can be used to efficiently predict the motions of symmetric molecular linkages, and we numerically analyze configuration spaces supporting the symmetric Molecular Conjectures formulated herein.

Keywords

Rigidity Flexibility Symmetry Molecular linkage Configuration space 

Notes

Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under project DPI2010-18449.

References

  1. 1.
    Asimov, L., Roth, B.: The rigidity of graphs. AMS 245, 279–289 (1978)Google Scholar
  2. 2.
    Atkins, P., Child, M., Phillips, C.: Tables for Group Theory. Oxford University Press, Oxford (1970)Google Scholar
  3. 3.
    Daniel, R.M., Dunn, R.V., Finney, J.L., Smith, J.C.: The role of dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct. 32, 69–92 (2003)CrossRefGoogle Scholar
  4. 4.
    Goodsell, D., Olson, A.: Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000)CrossRefGoogle Scholar
  5. 5.
    Henderson, M.E.: Multiparameter parallel search branch switching. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 15(3), 967–974 (2005)Google Scholar
  6. 6.
    Henderson, M.E.: Multiple parameter continuation: computing implicitly defined \(k\)-manifolds. Int. J. Bifurcat. Chaos 12(3), 451–476 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Jacobs, D., Rader, A., Kuhn, L., Thorpe, M.: Protein flexibility predictions using graph theory. Proteins Struct. Funct. Genet. 44, 150–165 (2001)Google Scholar
  8. 8.
    Jagodzinski, F., Hardy, J., Streinu, I.: Using rigidity analysis to probe mutation-induced structural changes in proteins. J. Bioinform. Comput. Biol. 10(10), (2012)Google Scholar
  9. 9.
    Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. Discrete Comput. Geom. 45(4), 647–700 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lee, A., Streinu, I.: Pebble game algorihms and \((k, l)\)-sparse graphs. In: European Conference on Combinatorics, Graph Theory and Applications, Berlin pp. 181–186 (2005)Google Scholar
  11. 11.
    Porta, J.M., Ros, L., Bohigas, O., Manubens, M., Rosales, C., Jaillet, L.: The CUIK suite: motion analysis of closed-chain multibody systems (Submitted)Google Scholar
  12. 12.
    Porta, J.M., Ros, L., Thomas, F., Corcho, F., Cantó, J., Pérez, J.J.: Complete maps of molecular-loop conformational spaces. J. Comput. Chem. 28, 2170–2189 (2007)CrossRefGoogle Scholar
  13. 13.
    Schulze, B., Sljoka, A., Whiteley, W.: How does symmetry impact the rigidity of proteins? Phil. Trans. R. Soc. A (2013, in press)Google Scholar
  14. 14.
    Schulze, B.: Symmetry as a sufficient condition for a finite flex. SIAM J. Discrete Math. 24(4), 1291–1312 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Schulze, B., Whiteley, W.: The orbit rigidity matrix of a symmetric framework. Discrete Comput. Geom. 46(3), 561–598 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Sljoka, A.: Algorithms in rigidity theory with applications to protein flexibility and mechanical linkages. Ph.D. Thesis, York University http://www.math.yorku.ca/~adnanslj/adnanthesis.pdf (2012)
  17. 17.
    Tanigawa, S.: Matroids of gain graphs in applied discrete geometry. arXiv:1207.3601 (2012)Google Scholar
  18. 18.
    Tay, T.S.: Rigidity of multi-graphs, linking rigid bodies in \(n\)-space. J. Comb. Theory, B 36, 95–112 (1984)Google Scholar
  19. 19.
    Tay, T.S., Whiteley, W.: Recent advances in generic rigidity of structures. Struct. Topol. 9, 31–38 (1985)Google Scholar
  20. 20.
    Whiteley, W.: Some matroids from discrete applied geometry. Contemp. Math. 197, 171–311 (1996)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Whiteley, W.: Counting out to the flexibility of molecules. Phys. Biol. 2, 1–11 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Josep M. Porta
    • 1
    Email author
  • Lluis Ros
    • 1
  • Bernd Schulze
    • 2
  • Adnan Sljoka
    • 3
  • Walter Whiteley
    • 3
  1. 1.Institut de Robòtica i Informàtica Industrial, UPC-CSICBarcelonaSpain
  2. 2.Department of Mathematics and StatisticsUniversity of LancasterLancasterUK
  3. 3.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations