Advertisement

A Blend of Delassus Four-Bar Linkages

  • Chung-Ching Lee
  • Jacques M. Hervé
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

In 1922, Delassus found out three four-bar linkages with four parallel helical H pairs whose one-degree-of-freedom mobility is conditioned by equalities of bar lengths. Our paper establishes that these linkages are not independent. Two isosceles triangle HHHPs are hybridized to obtain the Delassus 4H rhomboid (kite) linkage. Using an auxiliary chain whose mobility is explained by a group of Schoenflies motions and a Delassus 4H parallelogram, the Delassus 4H crossed parallelogram is newly derived from this rhomboid. It is further verified that the isosceles triangle and the Delassus parallelogram are two basic linkages and that the rhomboid and the crossed parallelogram stem from them. Finally, a blend of Delassus 4-bar linkages is proposed and can be used as a basic building block (BBK) for deployable structures. Two examples of deployable linkages with four and six BBKs are introduced.

Keywords

Delassus linkage Isosceles triangle Rhomboid Parallelogram Schoenflies motion Deployable linkage. 

Notes

Acknowledgments

The authors are very thankful to the National Science Council for supporting this research under grants NSC 101-2221-E-151-017.

References

  1. 1.
    Delassus, E.: Les chains articulées fermées et déformables á quatre membres. Bull. Sci. Math. 46(2), 283–304 (1922)zbMATHGoogle Scholar
  2. 2.
    Hervé, J.M.: Analyse structurelle des mécanismes par groupe des déplacements. Mech. Mach. Theory 13(4), 437–450 (1978)Google Scholar
  3. 3.
    Lee, C.-C., Hervé, J.M.: Synthesize new 5-bar paradoxical chains via the elliptic cylinder. Mech. Mach. Theory 46(6), 784–793 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, G.T.: A new mechanism. Engineering 76, 777–778 (1903)Google Scholar
  5. 5.
    Borel, E.: Mémoires des savants étrangers: Mémoire sur les déplacements á trajectories sphériques, Comptes Rendus, Tome.XXXIII, No.1, p. 56 (1904)Google Scholar
  6. 6.
    Hervé, J.M.: A new four-bar linkage completing Delassus findings. Trans. Can. Soc. Mech. Eng. 35(1), 57–62 (2011)Google Scholar
  7. 7.
    Lee, C.-C., Hervé, J.M.: On the helical Cardan motion and related paradoxical chains. Mech. Mach. Theory 52, 94–105 (2012)CrossRefGoogle Scholar
  8. 8.
    Lee, C-C., Hervé, J.M.: Cartesian parallel manipulators with pseudoplanar limbs. ASME Trans. J. Mech. Design 129(12), 1256–1264 (2007)Google Scholar
  9. 9.
    Lee, C.-C., Hervé, J.M.: Type synthesis of primitive Schoenflies-motion generators. Mech. Mach. Theory 44(10), 1980–1997 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lee, C.-C., Hervé, J.M.: On the Delassus parallelogram. In: Advances in Robot Kinematics, pp. 439–449, Springer Science, ISBN 978-1-4020-8599-4 (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.National Kaohsiung University of Applied SciencesKaohsiungTaiwan
  2. 2.Ecole Centrale des Arts et ManufacturesParisFrance

Personalised recommendations