Advertisement

Dimensional Synthesis of a Spatial Orientation 3-DoF Parallel Manipulator by Characterizing the Configuration Space

  • M. Urízar
  • V. Petuya
  • M. Diez
  • A. Hernández
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 15)

Abstract

In this paper the authors approach the dimensional synthesis of parallel manipulators focusing on the evaluation of important entities belonging to the configuration space, such as workspace and joint space. In particular, 3-DoF manipulators that can perform non-singular transitions are considered, illustrating the procedure with a case study. The target is to search for designs that achieve the goals of adequate size and shape of the workspace.

Keywords

Parallel mechanisms Configuration space Dimensional synthesis 

Notes

Acknowledgments

The authors wish to acknowledge the financial support received from Ministerio de Economía y Competitividad (Project DPI2011- 22955), the European Union (Project FP7-CIP-ICT-PSP-2009-3) and Basque Government, Dpto. Educ., Univ. e Investig. (Project IT445-10) and UPV/EHU under program UFI 11/29.

References

  1. 1.
    Altuzarra, O., Pinto, C., Sandru, B., Hernández, A.: Optimal dimensioning for parallel manipulators: workspace, dexterity and energy. ASME J. Mech. Des. 133(4), 041,007-7 (2011)Google Scholar
  2. 2.
    Bonev, I., Rhyu, J.: A geometrical method for computing the constant-orientation workspace of 6- PRRS parallel manipulators. Mech. Mach. Theory 36, 1–13 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gosselin, C., Angeles, J.: A global performance index for the kinematic optimization of robotic manipulators. J. Mech. Des. 113(3), 220–226 (1991)CrossRefGoogle Scholar
  4. 4.
    Husty, M.: Non-singular assembly mode change in 3-RPR-parallel manipulators. In: Kecskeméthy, A., Müller, A. (eds.) Computational Kinematics. Springer, Berlin (2009)Google Scholar
  5. 5.
    Liu, X.J., Guan, L., Wang, J.: Kinematics and closed optimal design of a kind of PRRRP parallel manipulator. ASME J. Mech. Des. 129(5), 558–563 (2007)CrossRefGoogle Scholar
  6. 6.
    Merlet, J.P.: Designing a parallel manipulator for a specific workspace. Int. J. Robot. Res. 16(4), 545–556 (1997)CrossRefGoogle Scholar
  7. 7.
    Monsarrat, B., Gosselin, C.: Workspace analysis: and optimal design of a 3-leg 6-DOF parallel platform mechanism. IEEE Trans. Robot. Autom. 19(6), 954–966 (2003)CrossRefGoogle Scholar
  8. 8.
    Ottaviano, E., Ceccarelli, M.: An analytical design for CaPaMan with prescribed position and orientation. In: Proceedings of the ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference, Baltimore (2000)Google Scholar
  9. 9.
    Urízar, M.: Methodology to enlarge the workspace of parallel manipulators by means of non-singular transitions. Ph.D. thesis, University of the Basque Country (UPV/EHU). http://www.ehu.es/compmech/members/monica-urizar/research/ (2012)
  10. 10.
    Urízar, M., Petuya, V., Altuzarra, O., Hernández, A.: Assembly mode changing in the cuspidal analytic 3-R PR. IEEE Trans. Robot. 28(2), 506–513 (2012)CrossRefGoogle Scholar
  11. 11.
    Zein, M., Wenger, P., Chablat, D.: Non-singular assembly mode changing motions for 3-RPR parallel manipulators. Mech. Mach. Theory 43(4), 480–490 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.University of the Basque CountryFaculty of Engineering in Bilbao, Mechanical Engineering DepartmentBilbaoSpain

Personalised recommendations