The Dynamics of One-Dimensional Relay-Type Systems

  • Vladimir M. Akulin
Part of the Theoretical and Mathematical Physics book series (TMP)


Thus far we have mainly considered an extreme of quantum complexity, where each pair of quantum states has been coupled by a matrix element, which is statistically equivalent to any matrix element coupling another pair of levels. Although this was not strictly speaking the case for two-band systems where states of the same bands are not coupled, the resulting impact of this fact on their behavior is so tiny that we could attribute them to the same class of problems. The structure of the couplings among different quantum states is closely related to the spatial dimensionality of the system, and the situation where all of the coupling matrix elements have the same order of magnitude is often referred to as the 0-dimensional case.


Density Matrix Harmonic Oscillator Recurrence Relation Population Distribution Liouville Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, G.S.: Control of decoherence and relaxation by frequency modulation of a heat bath. Phys. Rev. A 61, 013809 (2000)ADSGoogle Scholar
  2. 2.
    Akulin, V.M.: Contribution of weak and multiphoton transitions to the excitation of polyatomic molecules in an intense laser field. Sov. Phys. JETP 56, 533–538 (1982)Google Scholar
  3. 3.
    Akulin, V.M.: Singularities of collisional vibrational relaxation processes in strongly excited spectrally complex polyatomic molecules. Sov. Phys. JETP 57, 774–780 (1983)Google Scholar
  4. 4.
    Akulin, V.M., Karlov, N.V.: Intense Resonant Interactions in Quantum Electronics. Springer, Berlin (1991)Google Scholar
  5. 5.
    Allen, L., Eberly, J.H.: Optical Resonance and Two-Level Atoms. Wiley, Chichester (1975)Google Scholar
  6. 6.
    Altshuler, B.L., Aronov, A.G., Khmelnitsky, D.E.: Effects of electron-electron collisions with small energy transfers on quantum localisation. J. Phys. C Solid State Phys. 15, 7367–7386 (1982)ADSGoogle Scholar
  7. 7.
    Amico, L., Osterloh, A., Plastina, F., Fazio, R., Palma, G.M.: Dynamics of entanglement in one-dimensional spin systems. Phys. Rev. A 69, 022304 (2004)ADSGoogle Scholar
  8. 8.
    Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1957)ADSGoogle Scholar
  9. 9.
    Anderson, P.W., Thouless, D.J., Abrahams, E., Fisher, D.S.: New method for a scaling theory of localization. Phys. Rev. B 22, 3519–3526 (1980)ADSMathSciNetGoogle Scholar
  10. 10.
    Arnold, V.I., Weinstein, A., Vogtmann, K.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)Google Scholar
  11. 11.
    Askaryan, G.A.: Excitation and dissociation of molecules in intense light field. Sov. Phys. JETP 19, 273–274 (1964)Google Scholar
  12. 12.
    Averbukh, S., Perelman, N.F.: Fractional revivals: universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics. Physics Letters A 139, 449–454 (1989)ADSGoogle Scholar
  13. 13.
    Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalization of entanglement. Phys. Rev. Lett. 92, 107902 (2004)ADSGoogle Scholar
  14. 14.
    Barut, A., Raczka, R.: Theory of Group Representations and Applications. Polish Scientific Publisher, Warszava (1977)Google Scholar
  15. 15.
    Basko, D.M., Skvortsov, M.A., Kravtsov, V.E.: Dynamic localization in quantum dots: analytical theory. Phys. Rev. Lett. 90, 096801–096804 (2003)ADSGoogle Scholar
  16. 16.
    Beenakker, C.W.J.: Random matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997)ADSGoogle Scholar
  17. 17.
    Bell, J.S.: On the Einstein–Podolsky–Rosen Paradox. Physics 1, 195–200 (1964)Google Scholar
  18. 18.
    Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  19. 19.
    Berezinskii, V.L.: Kinetics of a quantum particle in a one-dimensional random potential. Sov. Phys. JETP 38, 620–627 (1974)ADSGoogle Scholar
  20. 20.
    Bery, M.V., Tabor, M.: Poissonian statistics and clustering. Proc. R. Soc. Lond. 356, 375–394 (1977)ADSGoogle Scholar
  21. 21.
    Bixon, M., Jortner, J.: Intramolecular radiationless transitions. J. Chem. Phys. 48, 715–726 (1968)ADSGoogle Scholar
  22. 22.
    Bixon, M., Jortner, J.: Long radiative lifetimes of small molecules. J. Chem. Phys. 50, 3284–3290 (1969)ADSGoogle Scholar
  23. 23.
    Blanter, Y.M., Mirlin, A.D., Muzykantskii, B.A.: Quantum billiards with surface scattering: ballistic sigma-model approach. Phys. Rev. Lett. 80, 4161 (1998)ADSGoogle Scholar
  24. 24.
    Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)Google Scholar
  25. 25.
    Bloch, F.: Generalized theory of relaxation. Phys. Rev. 105, 1206–1222 (1957)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Bloch, F., Rabi, I.I.: Atoms in variable magnetic fields. Rev. Mod. Phys. 17, 237–244 (1945)ADSGoogle Scholar
  27. 27.
    Blombergen, N.: Nonlinear Optics. Benjamin, New York (1965)Google Scholar
  28. 28.
    Bohigas, O., Giannoni, M.J., Schmit, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–4 (1984)ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Bogomolny, E.B., Gerland, U., Schmit, C.: Models of intermediate spectral statistics. Phys. Rev. E 59, R1315–R1318 (1999)ADSGoogle Scholar
  30. 30.
    Bogomolny, E.B., Gerland, U., Schmit, C.: Singular statistics. Phys. Rev. E 63, 036206 (2001)ADSMathSciNetGoogle Scholar
  31. 31.
    Bogomolny, E., Giraud, O., Schmit, C.: Random matrix ensembles associated with lax matrices. Phys. Rev. Lett. 103, 054103 (2009)ADSGoogle Scholar
  32. 32.
    Borland, R.E.: The nature of the electronic states in disordered one-dimensional systems. Proc. Roy. Soc. Lond. A 274, 529–545 (1963)ADSzbMATHGoogle Scholar
  33. 33.
    Breit, G., Wigner, E.: Capture of slow neutrons. Phys. Rev. 40, 519–531 (1936)ADSGoogle Scholar
  34. 34.
    Brezin, E., Hikami, S.: Spectral form factor in a random matrix theory. Phys. Rev. E 55, 4067–4083 (1997)ADSMathSciNetGoogle Scholar
  35. 35.
    Brezin, E., Hakami, S.: Extension of level-spacing universality. Phys. Rev. E 56, 264–269 (1997)ADSGoogle Scholar
  36. 36.
    Brezin, E., Hikami, S.: Universal singularity at the closure of a gap in a random matrix theory. Phys. Rev. E 57, 4140–4149 (1998)ADSMathSciNetGoogle Scholar
  37. 37.
    Brezin, E., Hikami, S.: New correlation functions for random matrices and integrals over supergroups. J. Phys. A 36, 711–751 (2003)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Brezin, E., Hikami, S., Zee, A.: Universal correlations for the deterministic plus random Hamiltonians. Phys. Rev. E 51, 5442–5452 (1995)ADSGoogle Scholar
  39. 39.
    Brion, E., Carlier, F., Harel, G., Akulin, V.M.: Non-holonomic quantum control. J. Phys. B At. Mol. Opt. Phys. 44, 154001 (2011)Google Scholar
  40. 40.
    Brixner, T., Stenger, J., Vaswani, H.M., Cho, M., Blankenship, R.E., Fleming, G.R.: Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005)ADSGoogle Scholar
  41. 41.
    Brumer, P.W., Shapiro, M.: Principles of the Quantum Control of Molecular Processes. Wiley, New York (2003)Google Scholar
  42. 42.
    Bunkin, F.V., Prokhorov, A.M.: The excitation and ionization of atoms in a strong radiation field. Sov. Phys. JETP 19, 739–743 (1964)Google Scholar
  43. 43.
    Bunkin, F.V., Prokhorov, A.M., Karapetyan, R.V.: Dissociation of molecules in a strong radiation field. Sov. Phys. JETP 20, 145–148 (1965)Google Scholar
  44. 44.
    Burkey, R.S., Cantrell, C.D.: Multichannel excitation of the quasi-continuum. J. Opt. Soc. Am. B 2, 451–457 (1985)ADSGoogle Scholar
  45. 45.
    Butkovskiy, G., Samoilenko, Y.I.: Control of Quantum-Mechanical Processes and Systems. Kluwer Academic, Dordrecht (1990)zbMATHGoogle Scholar
  46. 46.
    Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)ADSGoogle Scholar
  47. 47.
    Carmeli, B., Nitzan, A.: Kinetic equation for collisionless multiphoton excitation of large molecules. Chem. Phys. Lett. 62, 457–460 (1978)ADSGoogle Scholar
  48. 48.
    Carmeli, B., Nitzan, A.: Random coupling model for intramolecular dynamics. J. Chem. Phys. 72, 2054–2080 (1980)ADSGoogle Scholar
  49. 49.
    Caruso, F., Chin, A.W., Datta, A., Huelga, S.F., Plenio, M.B.: Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys. Rev. A 81, 062346 (2010)ADSGoogle Scholar
  50. 50.
    Casati, G., Chiricov, B.V., Shepelyansky, D.L.: Quantum limitation for chaotic excitation of the hydrogen atom in a monochromatic field. Phys. Rev. Lett. 53, 2525–2528 (1984)ADSGoogle Scholar
  51. 51.
    Casati, G., Chirikov, B.V., Guarneri, I., Shepelyansky, D.L.: Dynamical stability of quantum chaotic motion in a hydrogen atom. Phys. Rev. Lett. 23, 2437–2440 (1986)ADSGoogle Scholar
  52. 52.
    Casati, G., Guarneri, I., Izrailev, F., Scharf, R.: Scaling behavior of localization in quantum chaos. Phys. Rev. Lett. 64, 5–8 (1990)ADSGoogle Scholar
  53. 53.
    Casati, G., Molinari, L., Izrailev, F.: Scaling properties of band random matrices. Phys. Rev. Lett. 64, 1851–1854 (1990)ADSMathSciNetzbMATHGoogle Scholar
  54. 54.
    Chalker, J.T., Lerner, I.V., Smith, R.A.: Random walks through the ensemble: linking spectral statistics with wave-function correlations in disordered metals. Phys. Rev. Lett. 77, 554–557 (1996)ADSGoogle Scholar
  55. 55.
    Chirikov, B.V.: Resonance processes in magnetic traps. J. Nucl. Energy C Plasma Phys. 1, 253–260 (1960)ADSGoogle Scholar
  56. 56.
    Chirikov, B.V., Shepelyansky, D.L.: Correlation properties of dynamical chaos in Hamiltonian systems. Physica D 13, 395–400 (1984)ADSMathSciNetzbMATHGoogle Scholar
  57. 57.
    Cirac, J.I., Zoller, P.: Quantum computation with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADSGoogle Scholar
  58. 58.
    Cohen-Tanoudji, C., Diu, B., Laloe, F.: Quantum Mechanics. Wiley, Paris (1977)Google Scholar
  59. 59.
    Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions: Basic Processes and Applications. Wiley-Interscience, New York (1998)Google Scholar
  60. 60.
    D’Alessandro, D.: Introduction to Quantum Control and Dynamics. Chapman & Hall/CRC Applied Mathematics & Nonlinear Science, London (2008)zbMATHGoogle Scholar
  61. 61.
    Delande, D., Zakrzewski, J.: Spontaneous emission of nondispersive Rydberg wave packets. Phys. Rev. A 58, 446–477 (1998)ADSGoogle Scholar
  62. 62.
    Delone, N.B., Fedorov, M.V.: Above-threshold ionization. Progr. Quant. Electron. 13, 267–298 (1989)ADSGoogle Scholar
  63. 63.
    Delone, N.B., Fedorov, M.V.: New effects in the multiphoton ionization of atoms. Sov. Phys. Uspekhi 32, 500–520 (1989)ADSGoogle Scholar
  64. 64.
    Delone, N.B., Krainov, V.P.: Atoms in Strong Light Fields. Springer, Berlin (1985)Google Scholar
  65. 65.
    Demikhovskii, V.Y., Izrailev, F.M., Malyshev, A.I.: Manifestation of Arnold diffusion in quantum systems. Phys. Rev. Lett. 88, 154101 (2002)ADSGoogle Scholar
  66. 66.
    Demkov, Y.N.: Charge transfer at small resonance defects. JETP 18, 138–142 (1964)Google Scholar
  67. 67.
    Demkov, Y.N., Osherov, V.I.: Stationary and nonstationary problems in quantum mechanics that can be solved by means of contour integration. Sov. Phys. JETP 26, 916–921 (1968)ADSGoogle Scholar
  68. 68.
    Deng, Z., Eberly, J.H.: Multiphoton absorption above ionization threshold by atoms in strong laser field. J. Opt. Soc. Am. B 2, 486–493 (1985)ADSGoogle Scholar
  69. 69.
    Deych, L.I., Lisyansky, A.A., Altshuler, B.L.: Single parameter scaling in one-dimensional localization revisited. Phys. Rev. Lett. 84, 2678–2681 (2000)ADSGoogle Scholar
  70. 70.
    Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)ADSzbMATHGoogle Scholar
  71. 71.
    Dodonov, V.V.: Universal integrals of motion and universal invariants of quantum systems. J. Phys. A 33, 7721–7738 (2000)ADSMathSciNetzbMATHGoogle Scholar
  72. 72.
    Dodonov, V.V., Man’ko, V.I.: Phase space eigenfunctions of multidimensional quadratic Hamiltonians. Physica A 137, 306–316 (1986)ADSMathSciNetGoogle Scholar
  73. 73.
    Dodonov, V.V., Manko, V.I., Nikonov, D.E.: Exact propagators for time-dependent Coulomb, delta and other potentials. Phys. Lett. A 162, 359–364 (1992)ADSMathSciNetGoogle Scholar
  74. 74.
    Doucot, B., Feigel’man, M.V., Ioffe, L.B., Ioselevich, A.S.: Protected qubits and Chern–Simons theories in Josephson junction arrays. Phys. Rev. B 71, 024505 (2005)ADSGoogle Scholar
  75. 75.
    Drobny, G., Jex, I., Buzek, V.: Mode entanglement in nondegenerate down-conversion with quantized pump. Phys. Rev. A 48, 569–579 (1993)ADSGoogle Scholar
  76. 76.
    Dubrovskii, Y.V., Fedorov, M.V., Ivanov, M.Y.: Rydberg atom ionization by an intense laser pulse with smooth time envelope: a model of two closely spaced levels coupled to continuum. Laser Physics 2, 288–298 (1992)Google Scholar
  77. 77.
    Dur, W., Vidal, G., Cirac, I.J.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetGoogle Scholar
  78. 78.
    Durand, P., Paladrova, I., Cadea, F.X.: Theory of Fano profiles. J. Phys. B 34, 1953–1986 (2001)ADSGoogle Scholar
  79. 79.
    Dykhne, M.: Adiabatic perturbation of the discrete spectrum states. Sov. Phys. JETP 14, 941–943 (1962)Google Scholar
  80. 80.
    Dyson, F.J.: The dynamics of a disordered linear chain. Phys. Rev. 92, 1331–1338 (1953)ADSMathSciNetzbMATHGoogle Scholar
  81. 81.
    Dyson, F.: Statistical theory of the energy levels of complex systems. J. Math. Phys. 3, 140–175 (1962)ADSMathSciNetzbMATHGoogle Scholar
  82. 82.
    Dyson, F.: A class of matrix ensembles. J. Math. Phys. 13, 90–97 (1972)ADSMathSciNetzbMATHGoogle Scholar
  83. 83.
    Eberly, J., Narozhny, N.B., Sanchez-Mondregon, J.J.: Periodic spontaneous collapse and revivals in a simple quantum model. Phys. Rev. Lett. 44, 1323–1325 (1980)ADSMathSciNetGoogle Scholar
  84. 84.
    Eckhardt, B.: Quantum mechanics of classically non-integrable systems. Phys. Rep. 163, 205–297 (1988)ADSMathSciNetGoogle Scholar
  85. 85.
    Einstein, A.: Zur Quantentheorie der Strahlung. Physikalische Zeitschrift 18, 121–128 (1917). The Collected Papers of Albert Einstein, Volume 6: The Berlin Years: Writings, 1914–1917 (English translation supplement). University Press, PrincetonGoogle Scholar
  86. 86.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSzbMATHGoogle Scholar
  87. 87.
    Efetov, K.: Supersymmetry in Disorder and Chaos. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  88. 88.
    Fano, U.: Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Nuovo Cimento N. S. 12, 154–161 (1935)zbMATHGoogle Scholar
  89. 89.
    Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)ADSzbMATHGoogle Scholar
  90. 90.
    Fedorov, M.V., Ivanov, M.Y., Movsesian, A.M.: Strong-field photoionization of an initially excited hydrogen atom: formation of Rydberg wavepacket, its structure and trapping of population at Rydberg levels. J. Phys. B 23, 2245S–2257S (1990)ADSGoogle Scholar
  91. 91.
    Fedorov, M.V., Movsesian, A.M.: Interference suppression of photoionization of Rydberg atoms in strong electromagnetic field. J. Opt. Soc. Am. B 6, 928–936 (1988)ADSGoogle Scholar
  92. 92.
    Fedorov, M.V., Movsesian, A.M.: Field-induced effects of narrowing of photoelectron spectra and stabilization of Rydberg atoms. J. Phys. B 21, L155 (1988)ADSGoogle Scholar
  93. 93.
    Fermi, E.: Quantum theory of radiation. Rev. Mod. Phys. 4, 87–133 (1932)ADSGoogle Scholar
  94. 94.
    Floquet, G.: Sur leséquations différentialles linéairesà coefficients périodiques. Ann. de l’Ecole Normale 2-e serie 12, 47–88 (1889)Google Scholar
  95. 95.
    Frydryszak, A.M.: Pure state entanglement in terms of nilpotent variables: eta-toolbox. In: Olkiewicz, R., Cegla, W., Frydryszak, A., Garbaczewski, P., Jakobczyk, L. (eds.) Quantum Dynamics and Information. World Scientific, Singapore (2011)Google Scholar
  96. 96.
    Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a sigma-model approach. Phys. Rev. Lett. 67, 2405–2409 (1991)ADSMathSciNetzbMATHGoogle Scholar
  97. 97.
    Fyodorov, Y.V., Mirlin, A.: Statistical properties of random banded matrices with strongly fluctuating diagonal elements. Phys. Rev. B 52, R11580–R11583 (1995)ADSGoogle Scholar
  98. 98.
    Fyodorov, Y.V., Chubykalo, O.A., Izrailev, F.M., Casati, G.: Wigner random banded matrices with sparse structure: local spectral density of states. Phys. Rev. Lett. 76, 1603–1606 (1996)ADSGoogle Scholar
  99. 99.
    Fyodorov, Y.V., Mirlin, A.D., Sommers, H.-J.: A novel field theoretical approach to the Anderson localization: sparse random hopping model. J. Phys. I France 2, 1571–1605 (1992)Google Scholar
  100. 100.
    Gallager, R.G.: Information Theory and Reliable Communications. Wiley, New York (1968)Google Scholar
  101. 101.
    Gallagher, T.F.: Rydberg Atoms. Cambridge University Press, Cambridge (1994)Google Scholar
  102. 102.
    Garanin, D.A., Schilling, R.: Effect of nonlinear sweep in the Landau-Zener-Stueckelberg effect. Phys. Rev. B 66, 174438 (2002)ADSGoogle Scholar
  103. 103.
    Gardiner, W., Zoller, P.: Quantum Noise. Springer, Berlin (2004)zbMATHGoogle Scholar
  104. 104.
    Gavrila, M., Kaminski, J.Z.: Free-free transitions in intense high-frequency laser fields. Phys. Rev. Lett. 52, 613–616 (1984)ADSGoogle Scholar
  105. 105.
    Ghosh, P.K.: Ion Traps. Clarendon, Oxford (1995)Google Scholar
  106. 106.
    Grahm, G., Shepelyansky, D.: A solid-state model for photonic localization in molecular quasi-continua. Europhys. Lett. 14, 211–215 (1991)ADSGoogle Scholar
  107. 107.
    Greenberger, D.M., Horn, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 73–76. Kluwer Academic, Dordrecht (1989)Google Scholar
  108. 108.
    Gruebele, M.: Intramolecular vibrational dephasing obeys a power law at intermediate times. Proc. Natl. Acad. Sci. USA 95, 5965–5970 (1998)ADSGoogle Scholar
  109. 109.
    Guérin, S., Jauslin, H.R.: Control of quantum systems by pulses: adiabatic Floquet theory. Adv. Chem. Phys. 125, 1–75 (2003)Google Scholar
  110. 110.
    Gutzwiller, M.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)zbMATHGoogle Scholar
  111. 111.
    Haake, F.: Quantum Signatures of Chaos. Springer, Berlin (2001)zbMATHGoogle Scholar
  112. 112.
    Hahn, E.L.: Spin echoes. Phys. Rev. 80, 580–594 (1950)ADSzbMATHGoogle Scholar
  113. 113.
    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80, 5239–5242 (1998)ADSMathSciNetzbMATHGoogle Scholar
  114. 114.
    Hubbard, J.: Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A 276, 238–257(1963); 277, 237–259 (1964); 281, 401–419 (1964)Google Scholar
  115. 115.
    Huckestein, B.: Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys. 67, 375–396 (1995)ADSGoogle Scholar
  116. 116.
    Husimi, K.: Miscellanea in elementary quantum mechanics. Prog. Theor. Phys. 9, 238–244, 381–402 (1953)ADSMathSciNetGoogle Scholar
  117. 117.
    Imry, J.: Introduction to Mesoscopic Physics. Oxford University Press, Oxford (2002)Google Scholar
  118. 118.
    Iserles, A., Marthinsenet, A., Nörsett, S.P.: On the implementation of the method of Magnus series for linear differential equations. BIT Numer. Math. 39, 281–304 (1999)zbMATHGoogle Scholar
  119. 119.
    Ishii, K.: Localization of eigenstates and transport phenomena in the one-dimensional disordered systems. Supl. Prog. Theor. Phys. 53, 77–138 (1972)ADSGoogle Scholar
  120. 120.
    Ivanov, M.Y.: Suppression of resonant multiphoton ionization via Rydberg states. Phys. Rev. A 49, 1165–1170 (1994)ADSGoogle Scholar
  121. 121.
    Izrailev, F.M.: Simple models of quantum chaos: spectrum and eigenfunctions. Physics Reports 5–6, 299–392 (1990)ADSMathSciNetGoogle Scholar
  122. 122.
    Jaksch, D., Briegel, H., Cirac, J.I., Gardiner, C.W., Zoller, P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999)ADSGoogle Scholar
  123. 123.
    Javanainen, J., Kyrölä, E.: Long-time limit of a quasicontinuum model. Opt. Commun. 56, 17–21 (1985)ADSGoogle Scholar
  124. 124.
    Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals. Princeton University Press, Princeton (1995)zbMATHGoogle Scholar
  125. 125.
    J. Phys. A 36(12) (28 March 2003)Google Scholar
  126. 126.
    Jungen, C.: Molecular Applications of Quantum Defect Theory. Institute of Physics Publisher, Philadelphia (1996)zbMATHGoogle Scholar
  127. 127.
    Jurdevic, V., Sussmann, H.J.: Control systems on Lie groups. J. Differ. Eq. 12, 313–329 (1972)ADSGoogle Scholar
  128. 128.
    Karczmarek, J., Scott, M., Ivanov, M.: Two-color control of localization: from lattices to spin systems. Phys. Rev. A 60, R4225–R4228 (1999)ADSGoogle Scholar
  129. 129.
    Karplus, R., Schwinger, J.: A note on saturation in microwave spectroscopy. Phys. Rev. 73, 1020–1026 (1948)ADSzbMATHGoogle Scholar
  130. 130.
    Kitaev, Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)ADSMathSciNetzbMATHGoogle Scholar
  131. 131.
    Knight, P.L., Lauder, M.A., Dalton, B.J.: Laser-induced continuum structure. Phys. Rep. 190, 1–61 (1990)ADSGoogle Scholar
  132. 132.
    Khodjasteh, K., Viola, L.: Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett. 102, 080501 (2009)ADSGoogle Scholar
  133. 133.
    Kofman, G.: Theory of single-photon bound-free transitions: extension of the pole approximation. J. Phys. B 30, 5141–5156 (1997)ADSGoogle Scholar
  134. 134.
    Kofman, G.: Relaxation of a two-level system strongly coupled to a reservoir: anomalously slow decoherence. Phys. Rev. A 64, 033809 (2001)ADSGoogle Scholar
  135. 135.
    Kofman, G., Kurizki, G.: Universal dynamical control of quantum mechanical decay: modulation of the coupling to the continuum. Phys. Rev. Lett. 87, 270405 (2001)Google Scholar
  136. 136.
    Kostelecky, V.A., Manko, V.I., Nieto, M.M., Traux, D.R.: Supersymmetry and time-dependent Landau system. Phys. Rev. A 48, 951–963 (1993)ADSMathSciNetGoogle Scholar
  137. 137.
    Kravtsov, V.E.: Time reversal symmetry breaking by ac field: effect of commensurability in frequency domain. Pramana J. Phys. 58, 183–193 (2002)ADSGoogle Scholar
  138. 138.
    Kravtsov, V.E., Lerner, I.V., Altshuler, B.L., Aronov, A.G.: Universal spectral correlations at the mobility edge. Phys. Rev. Lett. 72, 888–891 (1994)ADSGoogle Scholar
  139. 139.
    Kubo, R.: A general expression for the conductivity tensor. Can. J. Phys. 34, 1274–1277 (1956)ADSMathSciNetGoogle Scholar
  140. 140.
    Kurizki, G., Kofman, A.G., Yudson, V.: Resonant photon exchange by atom pairs in high-Q cavities. Phys. Rev. A 53, R35–R38 (1996)ADSGoogle Scholar
  141. 141.
    Kuznetsov, D., Bulgak, A., Dang, G.D.: Quantum Lévy process and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)ADSGoogle Scholar
  142. 142.
    Kyrölä, E., Eberly, J.: Quasicontinuum effects in molecular excitation. J. Chem. Phys. 82, 1841–1853 (1985)ADSGoogle Scholar
  143. 143.
    Kyrölä, E., Lindberg, M.: Serial and parallel multilevel systems. Phys. Rev. A 35, 4207–4225 (1987)ADSMathSciNetGoogle Scholar
  144. 144.
    Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)ADSGoogle Scholar
  145. 145.
    Landau, L.D.: Das Dämpfungsproblem in der Wellenmechanik. Zeitschrift Phys. Bd XLV, 430–441 (1927)Google Scholar
  146. 146.
    Landau, L.D., Lifshits, E.M.: Quantum mechanics. Butterworth-Heinemann, Oxford (1975–1999)Google Scholar
  147. 147.
    Lechtle, C., Averbukh, I.S., Schleich, W.P.: Generic structure of multilevel quantum beats. Phys. Rev. Lett. 77, 3999–4002 (1996)ADSGoogle Scholar
  148. 148.
    Levine, R.D.: Representation of one-dimensional motion in a Morse potential by a quadratic Hamiltonian. Chem. Phys. Lett. 95, 87–90 (1983)ADSMathSciNetGoogle Scholar
  149. 149.
    Levitov, L.S., Tsvelik, A.M.: Narrow-gap Luttinger liquid in carbon nanotubes. Phys. Rev. Lett. 90, 016401 (2003)ADSGoogle Scholar
  150. 150.
    Lichtenberg, A.J., Liberman, M.A.: Regular and Stochastic Motion. Springer, Berlin (1982)Google Scholar
  151. 151.
    Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)ADSGoogle Scholar
  152. 152.
    Lifshits, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)Google Scholar
  153. 153.
    Lindberg, M., Kyrölä, E.: Infinite multilevel system coupled to a quantum-field mode. J. Opt. Soc. Am. B 9, 595–604 (1992)ADSGoogle Scholar
  154. 154.
    Linden, N., Popescu, S.: On multi-particle entanglement. Fortschr. Phys. 4–5, 567–578 (1998)MathSciNetGoogle Scholar
  155. 155.
    Lloyd, P.: Exactly solvable model of electronic states in a three-dimensional disordered Hamiltonian: non-existence of localized states. J. Phys. C Solid State Phys. 2, 1717–1725 (1969)ADSGoogle Scholar
  156. 156.
    Makarov, A.: Coherent excitation of equidistant multilevel systems in a resonant monochromatic field. Sov. Phys. JETP 45, 918–924 (1977)ADSGoogle Scholar
  157. 157.
    Mandilara, A., Akulin, V.M., Smilga, A., Viola, L.: Description of quantum entanglement with nilpotent polynomials. Phys. Rev. A 74, 022331 (2006)ADSGoogle Scholar
  158. 158.
    Mandilara, A., Akulin, V.M., Kolar, M., Kurizki, G.: Control of multiatom entanglement in a cavity. Phys. Rev. A 75, 022327 (2007)ADSGoogle Scholar
  159. 159.
    Massey, H.S.W., Mott, N.F.: The Theory of Atomic Collisions. Clarendon, Oxford (1997)Google Scholar
  160. 160.
    Mathews, J., Walker, R.L.: Mathematical Methods of Physics. Addison-Wesley, New York (1971)Google Scholar
  161. 161.
    McCall, S.L., Hahn, E.L.: Self-induced transparency. Phys. Rev. 183, 457–485 (1969)Google Scholar
  162. 162.
    Mehring, M., Muller, K., Averbukh, I.Sh., Merkel, W., Schleich, W.P.: NMR experiment factors numbers with gauss sums. Phys. Rev. Lett. 98, 120502 (2007)ADSGoogle Scholar
  163. 163.
    Metha, M.L.: Random Matrices and Statistical Theory of Energy Levels. Academic, New York (1967)Google Scholar
  164. 164.
    Meystre, P.: Atom Optics. Springer, New York (2001)Google Scholar
  165. 165.
    Mezard, M., Parisi, G., Zee, A.: Spectra of Euclidean random matrices. Nucl. Phys. B 59, 689–701 (1999)ADSMathSciNetGoogle Scholar
  166. 166.
    Mirlin, D., Fyodorov, Y.V., Dittes, F.-M., Quezada, J., Seligman, T.H.: Transition from localized to extended eigenstates in the ensembles of power-law random banded matrices. Phys. Rev. E 54, 3221–3230 (1996)ADSGoogle Scholar
  167. 167.
    Mott, N.F., Twose, W.D.: The theory of impurity conduction. Adv. Phys. 10, 107–163 (1961)ADSGoogle Scholar
  168. 168.
    Mourachko, I., Comparat, D., de Tomasi, F., Fioretti, A., Nosbaum, P., Akulin, V.M., Pillet, P.: Many-body effects in a frozen Rydberg gas. Phys. Rev. Lett. 80, 253–256 (1998)ADSGoogle Scholar
  169. 169.
    Mower, L.: Decay theory of closely coupled unstable states. Phys. Rev. 142, 799–816 (1966)ADSGoogle Scholar
  170. 170.
    Mudry, P.W., Brouwer, B.I., Halperin, V., Gurarie, A.Z.: Density of states in the non-Hermitian Lloyd model. Phys. Rev. B 58, 13539 (1998)ADSGoogle Scholar
  171. 171.
    Mukamel, S., Jortner, J.: A model for isotope separation via molecular multiphoton dissociation. Chem. Phys. Lett. 40, 150–156 (1976)ADSGoogle Scholar
  172. 172.
    Narevich, R., Prange, R.E., Zaitsev, O.: Square billiard with an Aharonov-Bohm flux line. Physica E 9, 578–582 (2001)ADSGoogle Scholar
  173. 173.
    Nikitin, E.E.: Theory Elementary Atomic and Molecular Processes. Oxford University Press, Oxford (1985)Google Scholar
  174. 174.
    Nikitin, E.E., Umanskii, S.Y.: Theory of Slow Atomic Collisions. Springer, New York (1984)Google Scholar
  175. 175.
    Offer, C.R., Simons, B.D.: Field theory of Euclidean random matrix ensembles. J. Phys. A Math. Gen. 33, 7567 (2000)ADSMathSciNetzbMATHGoogle Scholar
  176. 176.
    Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)ADSMathSciNetGoogle Scholar
  177. 177.
    Parisi, G.: Euclidean random matrices: solved and open problems. In: Brezin, E., Kazakov, V., Serban, D., Wiegmann, P. (Eds.), Application of Random Matrices in Physics. NATO Science Series 206, vol. 21, pp. 219–260. Springer, Berlin (2006)Google Scholar
  178. 178.
    Pastur, L.A.: On the spectrum of random matrices. Theor. Math. Phys. (USSR) 10, 67–74 (1972)Google Scholar
  179. 179.
    Pechukas, P.: Quantum chaos in the irregular spectrum. Chem. Phys. Lett. 86, 553–557 (1982)ADSGoogle Scholar
  180. 180.
    Pechukas, P.: Distribution of energy eigenvalues in the irregular spectrum. Phys. Rev. Lett. 51, 943–946 (1983)ADSMathSciNetGoogle Scholar
  181. 181.
    Perelomov, M.: Integrable Systems of Classical Mechanics and Lie Algebras. Springer, Berlin (1990); Generalized Coherent States and Their Applications, Springer, Berlin (1986)Google Scholar
  182. 182.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1418 (1996)ADSMathSciNetzbMATHGoogle Scholar
  183. 183.
    Porter, E.: Statistical Theories of Spectra: Fluctuations. Academic, New York (1965)Google Scholar
  184. 184.
    Porter, C.E., Thomas, R.G.: Fluctuation of nuclear reaction width. Phys. Rev. 104, 483–491 (1956)ADSGoogle Scholar
  185. 185.
    Quack, M.: Theory of unimolecular reactions induced by monochromatic infrared radiation. J. Chem. Phys. 69, 1282–1307 (1978)ADSGoogle Scholar
  186. 186.
    Rabi, I.I., Ramsey, N.F., Schwinger, J.: Use of rotating coordinates in magnetic resonance problem. Rev. Mod. Phys. 26, 167–171 (1954)ADSzbMATHGoogle Scholar
  187. 187.
    Reichl, L.E.: The Transition to Chaos. Springer, New York (1992)zbMATHGoogle Scholar
  188. 188.
    Rhodes, K., Szöke, A., Javan, A.: The influence of level degeneracy on the self-induced transparency effect. Phys. Rev. Lett. 21, 1151–1155 (1968)ADSGoogle Scholar
  189. 189.
    Ritus, V.I.: Shift and splitting of atomic energy levels by the field of an electromagnetic wave. Sov. Phys. JETP 24, 1041–1044 (1967)ADSGoogle Scholar
  190. 190.
    Sargent, M., Lamb, W.E., Scully, M.O.: Laser Physics. Addison-Wesley, Reading (1987)Google Scholar
  191. 191.
    Schafer, K.J., Kulander, K.C.: Phase dependent effects in multiphoton ionization induced by a laser field and its second harmonic. Phys. Rev. A 45, 8026–8033 (1992)ADSGoogle Scholar
  192. 192.
    Schlag, W.: ZEKE Spectroscopy. Cambridge University Press, Cambridge (1998)Google Scholar
  193. 193.
    Schleich, W.: Quantum Optics in Phase Space. Wiley, Weinheim (2001)zbMATHGoogle Scholar
  194. 194.
    Schofield, S.A., Wolynes, P.G.: A scaling perspective of quantum energy flow in molecules. J. Chem. Phys. 98, 1123–1131 (1992)ADSGoogle Scholar
  195. 195.
    Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935). English translation: Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philosoph. Soc. 31, 555–563 (1935)Google Scholar
  196. 196.
    Seba, P.: Wave chaos in singular quantum billiard. Phys. Rev. Lett. 64, 1855–1858 (1990)ADSMathSciNetzbMATHGoogle Scholar
  197. 197.
    Shepelyansky, L.: Localization of diffusive excitation in multi-level systems. Phys. D Nonlinear Phenom. 28, 103–114 (1987)ADSGoogle Scholar
  198. 198.
    Shepelyansky, L.: Coherent propagation of two interacting particles in a random potential. Phys. Rev. Lett. 73, 2607–2610 (1994)ADSGoogle Scholar
  199. 199.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)ADSGoogle Scholar
  200. 200.
    Shore, W., Eberly, J.H.: Analytic approximations in multi-level excitation theory. Opt. Comm. 24, 83–88 (1978)ADSGoogle Scholar
  201. 201.
    Sinai, Y.G.: On the concept of entropy for a dynamic system. Sov. Phys. Doklady 124, 768–771 (1959)MathSciNetzbMATHGoogle Scholar
  202. 202.
    Sinai, Y.G.: Introduction to Ergodic Theory. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  203. 203.
    Sinai, Y.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys. 46, 861–909 (1987)ADSMathSciNetGoogle Scholar
  204. 204.
    Sinai, Y.G.: Topics in Ergodic Theory. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  205. 205.
    Sinai, Y.G., Soshnikov, A.B.: A refinement of Wigner’s semicircle in a neighbourhood of the spectrum edge for random symmetric matrices. Funct. Anal. Appl. 32, 114–131 (1998)MathSciNetGoogle Scholar
  206. 206.
    Skvortsov, M.A., Basko, D.M., Kravtsov, V.E.: Energy absorption in time-dependent unitary random matrix ensembles: dynamic vs Anderson localization. JETP Lett. 80, 60–66 (2004)ADSGoogle Scholar
  207. 207.
    Sobelman, I.I., Vainshtain, L.A., Yukov, E.A.: Excitation of Atoms and Broadening of Spectral Lines. Springer, New York (1981)Google Scholar
  208. 208.
    Stelmachovi, P., Buzek, V.: Quantum-information approach to Ising model: entanglement in chains of qubits. Phys. Rev. A 70, 032313 (2004)ADSGoogle Scholar
  209. 209.
    Stenholm, S.: Quantum theory of electromagnetic fields interacting with atoms and molecules. Physics Reports 6, 1–122 (1973)ADSGoogle Scholar
  210. 210.
    Thouless, J.: Maximum metallic resistance in thin wires. Phys. Rev. Lett. 39, 1167–1169 (1977)ADSGoogle Scholar
  211. 211.
    Vedral, V., Plenio, M.P., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)ADSMathSciNetzbMATHGoogle Scholar
  212. 212.
    Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)ADSMathSciNetGoogle Scholar
  213. 213.
    Vogel, K., Akulin, V.M., Schleich, W.P.: Quantum state engineering of the radiation field. Phys. Rev. Lett. 71, 1816–1819 (1993)ADSGoogle Scholar
  214. 214.
    Weisskopf, V., Wigner, E.: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63, 54–73 (1930)ADSzbMATHGoogle Scholar
  215. 215.
    Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSGoogle Scholar
  216. 216.
    Wigner, E.: On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53(36) (1951)Google Scholar
  217. 217.
    Wigner, E.: On the distribution of the roots of certain symmetric matrices. Ann. Math 65, 203–207 (1957)MathSciNetzbMATHGoogle Scholar
  218. 218.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSGoogle Scholar
  219. 219.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSGoogle Scholar
  220. 220.
    Yurovsky, V.A., Ben-Reuven, A.: Saturated transition in exactly soluble models of two-state curve crossing with time-dependent potentials. Phys. Rev. A 60, 4561–4566 (1999)ADSGoogle Scholar
  221. 221.
    Yurovsky, V.A., Ben-Reuven, A., Julienne, P.S., Brand, Y.B.: Counterintuitive transitions in multistate curve crossing involving linear potentials. J. Phys. B 32, 1845–1857 (1999)ADSGoogle Scholar
  222. 222.
    Zaslavski, M., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A.: Weak Chaos and Quasi-Regular Patterns. Cambridge University Press, Cambridge (1991)Google Scholar
  223. 223.
    Zeldovich, Y.B.: The quasienergy of a quantum mechanical system subjected to a periodic action. Sov. Phys. JETP 24, 1006–1008 (1967)ADSGoogle Scholar
  224. 224.
    Zeldovich, Y.B.: Scattering and emission of a quantum system in a strong electromagnetic wave. Sov. Phys. Uspekhi 16, 427–433 (1973)ADSGoogle Scholar
  225. 225.
    Zirnbauer, M.: Anderson localization and non linear sigma-model with graded symmetry. Nucl. Phys. B 265, 375–408 (1986)ADSMathSciNetGoogle Scholar
  226. 226.
    Zwanzig, R.: Memory effects in irreversible thermodynamics. Phys. Rev. 124, 983–992 (1961). See also the book by Zwanzig, R. (Ed.), Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Vladimir M. Akulin
    • 1
  1. 1.CNRS Laboratoire Aimé CottonOrsay CedexFrance

Personalised recommendations