Advertisement

Molecular Pathology and Diagnostics of Cutaneous Malignancy

  • Sudeep Gaudi
  • Patricia M. McNab
  • Timothy W. McCardle
  • Jane L. MessinaEmail author
Chapter
Part of the Cancer Growth and Progression book series (CAGP, volume 16)

Abstract

Advances and discoveries in molecular genetics over the past decade have literally changed the face of diagnosis and treatment decisions for patients with melanoma and non-melanoma skin cancer. These include genetic analysis of skin biopsies as a diagnostic aid, genotyping of tumors from patients with malignant melanoma for personalized treatment of metastatic disease, and discovery of a new virus thought to play a role in the pathogenesis of Merkel cell carcinoma. Initiated by the discovery of a familial cancer gene in patients with familial melanoma and atypical nevi over three decades ago, molecular pathology techniques now play a central role in genetic testing for melanoma risk, in evaluation of melanocytic proliferations with uncertain biologic potential, and in stratifying patients with metastatic melanoma for treatment with targeted therapeutic agents, driving the search for better markers of prognosis and response to therapy. Targeted therapy is now available for treatment of unresectable or metastatic basal cell carcinoma. It is likely that continual improvements in techniques for analyzing blood and fresh and archival tumor tissue will uncover the pathogenesis of skin tumors related and unrelated to sun exposure, spawn the development of vaccinations or chemopreventive agents for these tumors, and enable physicians to customize treatment based on unique patient and tumor characteristics. This chapter will highlight relevant information concerning the molecular pathogenesis of melanoma, basal and squamous cell carcinoma, and Merkel cell carcinoma. Sections on molecular techniques available for diagnosis, prognosis, and treatment selection, emphasizing melanoma where this is most highly developed, are included

Keywords

Nonmelanoma skin cancer Molecular genetics of cutaneous malignancy Melanoma prognosis Prognostic biomarkers Merkel cell carcinoma pathogenesis 

Abbreviations

AE

Aloe-emodin

ASIP

Agouti signaling protein

BCC

Basal cell carcinoma

CGH

Comparative genomic hybridization

EGFR

Epidermal growth factor receptor

ERK

Extracellular signal-regulated kinase

FISH

Fluorescent in situ hybridization

GST

Glutathione S-transferase

GWASs

Genome-wide association studies

Hh

Hedgehog

MAPK

Mitogen-activated protein kinase

MC1R

Melanocortin 1 receptor

McPyV

Merkel cell polyomavirus

MEK

MAPK extracellular signal-regulated kinase

PCR

Polymerase chain reaction

SCC

Squamous cell carcinoma

SNP

Single nucleotide polymorphism

UV

Ultraviolet

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–12PubMedGoogle Scholar
  2. 2.
    National Cancer Institute Skin Cancer. http://www.cancer.gov/cancertopics/types/skin. Accessed 25 July 2013
  3. 3.
    Gerami P, Jewell SS, Morrison LE, Blondin B, Schulz J, Ruffalo T, Matushek P 4th, Legator M, Jacobson K, Dalton SR, Charzan S, Kolaitis NA, Guitart J, Lertsbarapa T, Boone S, LeBoit PE, Bastian BC (2009) Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol 33:1146–1156PubMedGoogle Scholar
  4. 4.
    Troxel DB (2006) Medicolegal aspects of error in pathology. Arch Pathol Lab Med 130:617–619PubMedGoogle Scholar
  5. 5.
    Brochez L, Verhaeghe E, Grosshans E, Haneke E, Piérard G, Ruiter D, Naeyaert JM (2002) Inter-observer variation in the histopathological diagnosis of clinically suspicious pigmented skin lesions. J Pathol 196:459–466PubMedGoogle Scholar
  6. 6.
    Heenan PJ, Matz LR, Blackwell JB, Kelsall GR, Singh A, ten Seldam RE, Holman CD (1984) Inter-observer variation between pathologists in the classification of cutaneous malignant melanoma in Western Australia. Histopathology 8:717–729PubMedGoogle Scholar
  7. 7.
    Shoo BA, Sagebiel RW, Kashani-Sabet M (2010) Discordance in the histopathologic diagnosis of melanoma at a melanoma referral center. J Am Acad Dermatol 62:751–756PubMedGoogle Scholar
  8. 8.
    van Dijk MC, Aben KK, van Hees F, Klaasen A, Blokx WA, Kiemeney LA, Ruiter DJ (2008) Expert review remains important in the histopathological diagnosis of cutaneous melanocytic lesions. Histopathology 52:139–146PubMedGoogle Scholar
  9. 9.
    Veenhuizen KC, De Wit PE, Mooi WJ, Scheffer E, Verbeek AL, Ruiter DJ (1997) Quality assessment by expert opinion in melanoma pathology: experience of the pathology panel of the Dutch Melanoma Working Party. J Pathol 182:266–272PubMedGoogle Scholar
  10. 10.
    Barnhill RL, Argenyi ZB, From L, Glass LF, Maize JC, Mihm MC Jr, Rabkin MS, Ronan SG, White WL, Piepkorn M (1999) Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum Pathol 30:513–520PubMedGoogle Scholar
  11. 11.
    Corona R, Mele A, Amini M, De Rosa G, Coppola G, Piccardi P, Fucci M, Pasquini P, Faraggiana T (1996) Interobserver variability on the histopathologic diagnosis of cutaneous melanoma and other pigmented skin lesions. J Clin Oncol 14:1218–1223PubMedGoogle Scholar
  12. 12.
    Farmer ER, Gonin R, Hanna MP (1996) Discordance in the histopathologic diagnosis of melanoma and melanocytic nevi between expert pathologists. Hum Pathol 27:528–531PubMedGoogle Scholar
  13. 13.
    Kempf W, Haeffner AC, Mueller B, Panizzon RG, Burg G (1998) Experts and gold standards in dermatopathology: qualitative and quantitative analysis of the self-assessment slide seminar at the 17th colloquium of the International Society of Dermatopathology. Am J Dermatopathol 20:478–482PubMedGoogle Scholar
  14. 14.
    Lodha S, Saggar S, Celebi JT, Silvers DN (1994) Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J Cutan Pathol 35:349–352Google Scholar
  15. 15.
    Piepkorn MW, Barnhill RL, Cannon-Albright LA et al (1994) A multiobserver, population-based analysis of histologic dysplasia in melanocytic nevi. J Am Acad Dermatol 30(5 Pt 1):707–714PubMedGoogle Scholar
  16. 16.
    Wechsler J, Bastuji-Garin S, Spatz A, Bailly C, Cribier B, Andrac-Meyer L, Vergier B, Fraitag S, Verola O, Wolkenstein P, French Cutaneous Cancerology Group (2002) Reliability of the histopathologic diagnosis of malignant melanoma in childhood. Arch Dermatol 138:625–628PubMedGoogle Scholar
  17. 17.
    Yeh I, Bastian BC (2009) Genome-wide associations studies for melanoma and nevi. Pigment Cell Melanoma Res 22:527–528PubMedGoogle Scholar
  18. 18.
    Calder KB, Morgan MB (2010) Carcinogenic pathway of malignant melanoma. In: Coppola D (ed) Mechanisms of oncogenesis, vol 12. Springer, Dordrecht, pp 149–157Google Scholar
  19. 19.
    Ibrahim N, Haluska FG (2009) Molecular pathogenesis of cutaneous melanocytic neoplasms. Annu Rev Pathol 4:551–579PubMedGoogle Scholar
  20. 20.
    Meyle KD, Guldberg P (2009) Genetic risk factors for melanoma. Hum Genet 126:499–510PubMedGoogle Scholar
  21. 21.
    Nelson AA, Tsao H (2009) Melanoma and genetics. Clin Dermatol 27:46–52PubMedGoogle Scholar
  22. 22.
    Palmieri G, Capone M, Ascierto ML, Gentilcore G, Stroncek DF, Casula M, Sini MC, Palla M, Mozzillo N, Ascierto PA (2009) Main roads to melanoma. J Transl Med 7(86)Google Scholar
  23. 23.
    Sekulic A, Jr Haluska P, Miller AJ, Genebriera De Lamo J, Ejadi S, Pulido JS, Salomao DR, Thorland EC, Vile RG, Swanson DL, Pockaj BA, Laman SD, Pittelkow MR, Markovic SN, Melanoma Study Group of Mayo Clinic Cancer Center (2008) Malignant melanoma in the 21st century: the emerging molecular landscape. Mayo Clin Proc 83:825–846PubMedGoogle Scholar
  24. 24.
    Bishop DT, Demenais F, Iles MM et al (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8):920–925PubMedGoogle Scholar
  25. 25.
    Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, Hankinson SE, Hu FB, Duffy DL, Zhao ZZ, Martin NG, Montgomery GW, Hayward NK, Thomas G, Hoover RN, Chanock S, Hunter DJ (2008) A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet 4(5):e1000074PubMedGoogle Scholar
  26. 26.
    Gudbjartsson DF, Sulem P, Stacey SN et al (2008) ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat Genet 40:886–891PubMedGoogle Scholar
  27. 27.
    Falchi M, Bataille V, Hayward NK, Duffy DL, Bishop JA, Pastinen T, Cervino A, Zhao ZZ, Deloukas P, Soranzo N, Elder DE, Barrett JH, Martin NG, Bishop DT, Montgomery GW, Spector TD (2009) Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nat Genet 41(8):915–919PubMedGoogle Scholar
  28. 28.
    Bataille V, Bishop JA, Sasieni P, Swerdlow AJ, Pinney E, Griffiths K, Cuzick J (1996) Risk of cutaneous melanoma in relation to the numbers, types and sites of naevi: a case-control study. Br J Cancer 73:1605–1611PubMedGoogle Scholar
  29. 29.
    Chang YM, Newton-Bishop JA, Bishop DT, Armstrong BK, Bataille V, Bergman W, Berwick M, Bracci PM, Elwood JM, Ernstoff MS, Green AC, Gruis NA, Holly EA, Ingvar C, Kanetsky PA, Karagas MR, Le Marchand L, Mackie RM, Olsson H, Østerlind A, Rebbeck TR, Reich K, Sasieni P, Siskind V, Swerdlow AJ, Titus-Ernstoff L, Zens MS, Ziegler A, Barrett JH (2009) A pooled analysis of melanocytic nevus phenotype and the risk of cutaneous melanoma at different latitudes. Int J Cancer 124:420–428PubMedGoogle Scholar
  30. 30.
    Hansson J (2008) Familial melanoma. Surg Clin North Am 88:897–916, viiiPubMedGoogle Scholar
  31. 31.
    Platz A, Ringborg U, Hansson J (2000) Hereditary cutaneous melanoma. Semin Cancer Biol 10:319–326PubMedGoogle Scholar
  32. 32.
    Smalley KS (2010) Understanding melanoma signaling networks as the basis for molecular targeted therapy. J Invest Dermatol 130:28–37PubMedGoogle Scholar
  33. 33.
    Kong Y, Kumar SM, Xu X (2010) Molecular pathogenesis of sporadic melanoma and melanoma-initiating cells. Arch Pathol Lab Med 134:1740–1749PubMedGoogle Scholar
  34. 34.
    Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20PubMedGoogle Scholar
  35. 35.
    Puzanov I, Flaherty KT (2010) Targeted molecular therapy in melanoma. Semin Cutan Med Surg 29:196–201PubMedGoogle Scholar
  36. 36.
    Wan PT, Garnett MJ, Roe SM, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R, Cancer Genome Project (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867PubMedGoogle Scholar
  37. 37.
    Benbow U, Tower GB, Wyatt CA, Buttice G, Brinckerhoff CE (2002) High levels of MMP-1 expression in the absence of the 2G single nucleotide polymorphism is mediated by p38 and ERK1/2 mitogen-activated protein kinases in VMM5 melanoma cells. J Cell Biochem 86:307–319PubMedGoogle Scholar
  38. 38.
    Cartlidge RA, Thomas GR, Cagnol S, Jong KA, Molton SA, Finch AJ, McMahon M (2008) Oncogenic BRAF (V600E) inhibits BIM expression to promote melanoma cell survival. Pigment Cell Melanoma Res 21:534–544PubMedGoogle Scholar
  39. 39.
    Eisenmann KM, VanBrocklin MW, Staffend NA, Kitchen SM, Koo HM (2003) Mitogen-activated protein kinase pathway-dependent tumor-specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad. Cancer Res 63:8330–8337PubMedGoogle Scholar
  40. 40.
    Huntington JT, Shields JM, Der CJ, Wyatt CA, Benbow U, Slingluff CL Jr, Brinckerhoff CE (2004) Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem 279:33168–33176PubMedGoogle Scholar
  41. 41.
    Kono M, Dunn IS, Durda PJ, Butera D, Rose LB, Haggerty TJ, Benson EM, Kurnick JT (2006) Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol Cancer Res 4:779–792PubMedGoogle Scholar
  42. 42.
    Kumar SM, Yu H, Edwards R, Chen L, Kazianis S, Brafford P, Acs G, Herlyn M, Xu X (2007) Mutant V600E BRAF increases hypoxia inducible factor-1alpha expression in melanoma. Cancer Res 67:3177–3184PubMedGoogle Scholar
  43. 43.
    Sharma A, Tran MA, Liang S, Sharma AK, Amin S, Smith CD, Dong C, Robertson GP (2006) Targeting mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in the mutant (V600E) B-Raf signaling cascade effectively inhibits melanoma lung metastases. Cancer Res 66:8200–8209PubMedGoogle Scholar
  44. 44.
    Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP (2005) Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65:2412–2421PubMedGoogle Scholar
  45. 45.
    Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151PubMedGoogle Scholar
  46. 46.
    Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–1656PubMedGoogle Scholar
  47. 47.
    Woods D, Cherwinski H, Venetsanakos E, Bhat A, Gysin S, Humbert M, Bray PF, Saylor VL, McMahon M (2001) Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol 21:3192–3205PubMedGoogle Scholar
  48. 48.
    Zhang XD, Borrow JM, Zhang XY, Nguyen T, Hersey P (2003) Activation of ERK1/2 protects melanoma cells from TRAIL-induced apoptosis by inhibiting Smac/DIABLO release from mitochondria. Oncogene 22:2869–2881PubMedGoogle Scholar
  49. 49.
    Luke JJ, Hodi FS (2013) The oncologist 18:717–725PubMedGoogle Scholar
  50. 50.
    Tsai J, Lee JT, Wang W et al (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A 105:3041–3046PubMedGoogle Scholar
  51. 51.
    Koch WH (2004) Technology platforms for pharmacogenomic diagnostic assays. Nat Rev Drug Discov 3:749–761PubMedGoogle Scholar
  52. 52.
    Busam KJ, Hedva C, Pulitzer M, von Deimling A, Jungbluth AA (2013) Am J Surg Pathol 37:413–420PubMedGoogle Scholar
  53. 53.
    Viros A, Fridlyand J, Bauer J, Lasithiotakis K, Garbe C, Pinkel D, Bastian BC (2008) Improving melanoma classification by integrating genetic and morphologic features. PLoS Med 5(6):e120PubMedGoogle Scholar
  54. 54.
    Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J (1987) Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6:3341–3351PubMedGoogle Scholar
  55. 55.
    Woodman SE, Davies MA (2010) Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol 80:568–574PubMedGoogle Scholar
  56. 56.
    Flaherty KT, Hodi FS, Bastian BC (2010) Mutation-driven drug development in melanoma. Curr Opin Oncol 22:178–183PubMedGoogle Scholar
  57. 57.
    Antonescu CR, Busam KJ, Francone TD, Wong GC, Guo T, Agaram NP, Besmer P, Jungbluth A, Gimbel M, Chen CT, Veach D, Clarkson BD, Paty PB, Weiser MR (2007) L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition. Int J Cancer 121:257–264PubMedGoogle Scholar
  58. 58.
    Ashida A, Takata M, Murata H, Kido K, Saida T (2009) Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer 124:862–868PubMedGoogle Scholar
  59. 59.
    Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, Town A, Harlow A, Cruz F 3rd, Azar S, Rubin BP, Muller S, West R, Heinrich MC, Corless CL (2008) KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 14:6821–6828PubMedGoogle Scholar
  60. 60.
    Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346PubMedGoogle Scholar
  61. 61.
    Rivera RS, Nagatsuka H, Gunduz M, Cengiz B, Gunduz E, Siar CH, Tsujigiwa H, Tamamura R, Han KN, Nagai N (2008) C-kit protein expression correlated with activating mutations in KIT gene in oral mucosal melanoma. Virchows Arch 452:27–32PubMedGoogle Scholar
  62. 62.
    Smalley KS, Sondak VK, Weber JS (2009) c-KIT signaling as the driving oncogenic event in sub-groups of melanomas. Histol Histopathol 24:643–650PubMedGoogle Scholar
  63. 63.
    Lennartsson J, Blume-Jensen P, Hermanson M, Ponten E, Carlberg M, Ronnstrand L (1999) Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene 18:5546–5553PubMedGoogle Scholar
  64. 64.
    Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, Snell GP, Zou H, Sang BC, Wilson KP (2004) Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 279:31655–31663PubMedGoogle Scholar
  65. 65.
    Hodi FS, Friedlander P, Corless CL, Heinrich MC, Mac Rae S, Kruse A, Jagannathan J, Van den Abbeele AD, Velazquez EF, Demetri GD, Fisher DE (2008) Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol 26:2046–2051PubMedGoogle Scholar
  66. 66.
    Lutzky J, Bauer J, Bastian BC (2008) Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation. Pigment Cell Melanoma Res 21:492–493PubMedGoogle Scholar
  67. 67.
    Eton O, Billings L, Kim K et al (2004) Phase II trial of imatinib mesylate (STI-571) in metastatic melanoma (MM) [abstract]. J Clin Oncol 22(14S):7528Google Scholar
  68. 68.
    Platz A, Egyhazi S, Ringborg U, Hansson J (2008) Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol 1:395–405PubMedGoogle Scholar
  69. 69.
    Margolin KA, Moon J, Flaherty LE et al (2010) Randomized phase II trial of sorafenib (SO) with temsirolimus (TEM) or tipifarnib (TIPI) in metastatic melanoma: Southwest Oncology Group Trial S0438 [abstract]. J Clin Oncol 28(15s):7528Google Scholar
  70. 70.
    Kaplan FM, Shao Y, Mayberry MM, Aplin AE (2011) Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene 30:366–371PubMedGoogle Scholar
  71. 71.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedGoogle Scholar
  72. 72.
    Koprowski H, Herlyn M, Balaban G, Parmiter A, Ross A, Nowell P (1985) Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma. Somat Cell Mol Genet 11:297–302PubMedGoogle Scholar
  73. 73.
    Rakosy Z, Vizkeleti L, Ecsedi S et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121(8):1729–1737PubMedGoogle Scholar
  74. 74.
    Bastian BC, Olshen AB, LeBoit PE, Pinkel D (2003) Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 163(5):1765–1770PubMedGoogle Scholar
  75. 75.
    Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58:2170–2175PubMedGoogle Scholar
  76. 76.
    Balazs M, Adam Z, Treszl A, Begany A, Hunyadi J, Adany R (2001) Chromosomal imbalances in primary and metastatic melanomas revealed by comparative genomic hybridization. Cytometry 46:222–232PubMedGoogle Scholar
  77. 77.
    Namiki T, Yanagawa S, Izumo T, Ishikawa M, Tachibana M, Kawakami Y, Yokozeki H, Nishioka K, Kaneko Y (2005) Genomic alterations in primary cutaneous melanomas detected by metaphase comparative genomic hybridization with laser capture or manual microdissection: 6p gains may predict poor outcome. Cancer Genet Cytogenet 157(1):1–11PubMedGoogle Scholar
  78. 78.
    Bastian BC, Xiong J, Frieden IJ, Williams ML, Chou P, Busam K, Pinkel D, LeBoit PE (2002) Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol 161:1163–1169PubMedGoogle Scholar
  79. 79.
    Bastian BC, Wesselmann U, Pinkel D, Leboit PE (1999) Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol 113:1065–1069PubMedGoogle Scholar
  80. 80.
    Bastian BC (2003) Understanding the progression of melanocytic neoplasia using genomic analysis: from fields to cancer. Oncogene 22:3081–3086PubMedGoogle Scholar
  81. 81.
    Bastian BC, Kashani-Sabet M, Hamm H, Godfrey T, Moore DH 2nd, Bröcker EB, LeBoit PE, Pinkel D (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60:1968–1973PubMedGoogle Scholar
  82. 82.
    Morey AL, Murali R, McCarthy SW, Mann GJ, Scolyer RA (2009) Diagnosis of cutaneous melanocytic tumours by four-colour fluorescence in situ hybridisation. Pathology 41:383–387PubMedGoogle Scholar
  83. 83.
    Gaiser T, Kutzner H, Palmedo G, Siegelin MD, Wiesner T, Bruckner T, Hartschuh W, Enk AH, Becker MR (2010) Classifying ambiguous melanocytic lesions with FISH and correlation with clinical long-term follow up. Mod Pathol 23:413–419PubMedGoogle Scholar
  84. 84.
    Vergier B, Prochazkova-Carlotti M, de la Fouchardiere A, Cerroni L, Massi D, De Giorgi V, Bailly C, Wesselmann U, Karlseladze A, Avril MF, Jouary T, Merlio JP (2011) Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases. Mod Pathol 24:613–623PubMedGoogle Scholar
  85. 85.
    Gerami P, Wass A, Mafee M, Fang Y, Pulitzer MP, Busam KJ (2009) Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Am J Surg Pathol 33:1783–1788PubMedGoogle Scholar
  86. 86.
    Pouryazdanparast P, Newman M, Mafee M, Haghighat Z, Guitart J, Gerami P (2009) Distinguishing epithelioid blue nevus from blue nevus-like cutaneous melanoma metastasis using fluorescence in situ hybridization. Am J Surg Pathol 33:1396–1400PubMedGoogle Scholar
  87. 87.
    Dalton SR, Gerami P, Kolaitis NA, Charzan S, Werling R, LeBoit PE, Bastian BC (2010) Use of fluorescence in situ hybridization (FISH) to distinguish intranodal nevus from metastatic melanoma. Am J Surg Pathol 34:231–237PubMedGoogle Scholar
  88. 88.
    Gerami P, Barnhill RL, Beilfuss BA, LeBoit P, Schneider P, Guitart J (2010) Superficial melanocytic neoplasms with pagetoid melanocytosis: a study of interobserver concordance and correlation with FISH. Am J Surg Pathol 34:816–821PubMedGoogle Scholar
  89. 89.
    Newman MD, Lertsburapa T, Mirzabeigi M, Mafee M, Guitart J, Gerami P (2009) Fluorescence in situ hybridization as a tool for microstaging in malignant melanoma. Mod Pathol 22:989–995PubMedGoogle Scholar
  90. 90.
    Gould Rothberg BE, Bracken MB, Rimm DL (2009) Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 101:452–474PubMedGoogle Scholar
  91. 91.
    Gould Rothberg BE, Rimm DL (2010) Biomarkers: the useful and the not so useful – an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol 130:1971–1987PubMedGoogle Scholar
  92. 92.
    Gimotty PA, Guerry D (2010) Prognostication in thin cutaneous melanomas. Arch Pathol Lab Med 134:1758–1763PubMedGoogle Scholar
  93. 93.
    Denicourt C, Saenz CC, Datnow B, Cui XS, Dowdy SF (2007) Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res 67:9238–9243PubMedGoogle Scholar
  94. 94.
    Briese J, Schulte HM, Bamberger CM, Loning T, Bamberger AM (2006) Expression pattern of osteopontin in endometrial carcinoma: correlation with expression of the adhesion molecule CEACAM1. Int J Gynecol Pathol 25:161–169PubMedGoogle Scholar
  95. 95.
    Gavert N, Sheffer M, Raveh S, Spaderna S, Shtutman M, Brabletz T, Barany F, Paty P, Notterman D, Domany E, Ben-Ze’ev A (2007) Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res 67:7703–7712PubMedGoogle Scholar
  96. 96.
    Thies A, Moll I, Berger J, Wagener C, Brümmer J, Schulze HJ, Brunner G, Schumacher U (2002) CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. J Clin Oncol 20:2530–2536PubMedGoogle Scholar
  97. 97.
    Watson-Hurst K, Becker D (2006) The role of N-cadherin, MCAM and beta3 integrin in melanoma progression, proliferation, migration and invasion. Cancer Biol Ther 5:1375–1382PubMedGoogle Scholar
  98. 98.
    Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616PubMedGoogle Scholar
  99. 99.
    Dessinioti C, Antoniou C, Katsambas A, Stratigos AJ (2010) Basal cell carcinoma: what’s new under the sun. Photochem Photobiol 86:481–491PubMedGoogle Scholar
  100. 100.
    Gallagher RP, Hill GB, Bajdik CD, Fincham S, Coldman AJ, McLean DI, Threlfall WJ (1995) Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol 131:157–163PubMedGoogle Scholar
  101. 101.
    Miller SJ (1991) Biology of basal cell carcinoma (Part I). J Am Acad Dermatol 24:1–13PubMedGoogle Scholar
  102. 102.
    Oberyszyn TM (2008) Non-melanoma skin cancer: importance of gender, immunosuppressive status and vitamin D. Cancer Lett 261:127–136PubMedGoogle Scholar
  103. 103.
    Epstein EH (2008) Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 8:743–754PubMedGoogle Scholar
  104. 104.
    Bodak N, Queille S, Avril MF, Bouadjar B, Drougard C, Sarasin A, Daya-Grosjean L (1999) High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc Natl Acad Sci U S A 96:5117–5122PubMedGoogle Scholar
  105. 105.
    Tilli CM, Van Steensel MA, Krekels GA, Neumann HA, Ramaekers FC (2005) Molecular aetiology and pathogenesis of basal cell carcinoma. Br J Dermatol 152:1108–1124PubMedGoogle Scholar
  106. 106.
    Hanada K, Ishikawa H, Tamai K, Hashimoto I, Sato K (1991) Expression of glutathione S-transferase-pi in malignant skin tumors. J Dermatol Sci 2:18–23PubMedGoogle Scholar
  107. 107.
    Saldanha G, Fletcher A, Slater DN (2003) Basal cell carcinoma: a dermatopathological and molecular biological update. Br J Dermatol 148:195–202PubMedGoogle Scholar
  108. 108.
    Reifenberger J, Wolter M, Knobbe CB, Köhler B, Schönicke A, Scharwächter C, Kumar K, Blaschke B, Ruzicka T, Reifenberger G (2005) Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152:43–51PubMedGoogle Scholar
  109. 109.
    Lindstrom E, Shimokawa T, Toftgard R, Zaphiropoulos PG (2006) PTCH mutations: distribution and analyses. Hum Mutat 27:215–219PubMedGoogle Scholar
  110. 110.
    Peukert S, Miller-Moslin K (2010) Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics. ChemMedChem 5:500–512PubMedGoogle Scholar
  111. 111.
    O’Driscoll L, McMorrow J, Doolan P, McKiernan E, Mehta JP, Ryan E, Gammell P, Joyce H, O’Donovan N, Walsh N, Clynes M (2006) Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays. Mol Cancer 5:74PubMedGoogle Scholar
  112. 112.
    Hatta N, Hirano T, Kimura T, Hashimoto K, Mehregan DR, Ansai S, Takehara K, Takata M (2005) Molecular diagnosis of basal cell carcinoma and other basaloid cell neoplasms of the skin by the quantification of Gli1 transcript levels. J Cutan Pathol 32:131–136PubMedGoogle Scholar
  113. 113.
    Jimeno A, Feldmann G, Suarez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, García-García E, López-Ríos F, Matsui W, Maitra A, Hidalgo M (2009) A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 8:310–314PubMedGoogle Scholar
  114. 114.
    Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D’Haese JG, Schoenberg MH, Berger F, Jauch KW, Hidalgo M, Heeschen C (2009) Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137:1102–1113PubMedGoogle Scholar
  115. 115.
    Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Mackey HM, Lum BL, Darbonne WC, Marsters JC Jr, de Sauvage FJ, Low JA (2009) Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361:1164–1172Google Scholar
  116. 116.
    Dose finding and safety of oral LDE225 in patients with advanced solid tumors 2010. http://clinicaltrials.gov/ct2/show/NCT00880308. Accessed 25 July 2013
  117. 117.
    Hosoya T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2008) Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription. Chembiochem 9:1082–1092PubMedGoogle Scholar
  118. 118.
    Mahindroo N, Connelly MC, Punchihewa C, Kimura H, Smeltzer MP, Wu S, Fujii N (2009) Structure-activity relationships and cancer-cell selective toxicity of novel inhibitors of glioma-associated oncogene homologue 1 (Gli1) mediated transcription. J Med Chem 52:4277–4287PubMedGoogle Scholar
  119. 119.
    Lacour JP (2002) Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms. Br J Dermatol 146(Suppl 61):17–19PubMedGoogle Scholar
  120. 120.
    Hussein MR (2005) Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol 32:191–205PubMedGoogle Scholar
  121. 121.
    Howell BG, Solish N, Lu C, Watanabe H, Mamelak AJ, Freed I, Wang B, Sauder DN (2005) Microarray profiles of human basal cell carcinoma: insights into tumor growth and behavior. J Dermatol Sci 39(1):39–51PubMedGoogle Scholar
  122. 122.
    Boukamp P (2005) Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 26:1657–1667PubMedGoogle Scholar
  123. 123.
    Lazar AJF, Murphy GF (2010) The skin. In: Kumar VM, Abul K, Abbas M, Nelson Fausto M, Jon C, Aster M (eds) Robbins and Cotran pathologic basis of disease, 8th edn. Elsevier, Philadelphia, pp 1178–1181Google Scholar
  124. 124.
    Harwood CA, Proby CM (2002) Human papillomaviruses and non-melanoma skin cancer. Curr Opin Infect Dis 15:101–114PubMedGoogle Scholar
  125. 125.
    Rubin AI, Chen EH, Ratner D (2005) Basal-cell carcinoma. N Engl J Med 353:2262–2269PubMedGoogle Scholar
  126. 126.
    Benjamin CL, Melnikova VO, Ananthaswamy HN (2008) P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer. Adv Exp Med Biol 624:265–282PubMedGoogle Scholar
  127. 127.
    Owens DM (2007) p53, chemokines, and squamous cell carcinoma. J Clin Invest 117:1752–1755PubMedGoogle Scholar
  128. 128.
    Jensen V, Prasad AR, Smith A, Raju M, Wendel CS, Schmelz M, Leyva W, Warneke J, Krouse RS (2010) Prognostic criteria for squamous cell cancer of the skin. J Surg Res 159:509–516PubMedGoogle Scholar
  129. 129.
    Meyer T, Arndt R, Christophers E, Nindl I, Stockfleth E (2001) Importance of human papillomaviruses for the development of skin cancer. Cancer Detect Prev 25:533–547PubMedGoogle Scholar
  130. 130.
    Ke H, Harris R, Coloff JL, Jin JY, Leshin B, Miliani de Marval P, Tao S, Rathmell JC, Hall RP, Zhang JY (2010) The c-Jun NH2-terminal kinase 2 plays a dominant role in human epidermal neoplasia. Cancer Res 70:3080–3088PubMedGoogle Scholar
  131. 131.
    Chakraborty S, Swanson BJ, Bonthu N, Batra SK (2010) Aberrant upregulation of MUC4 mucin expression in cutaneous condyloma acuminatum and squamous cell carcinoma suggests a potential role in the diagnosis and therapy of skin diseases. J Clin Pathol 63:579–584PubMedGoogle Scholar
  132. 132.
    Chou TH, Liang CH (2009) The molecular effects of aloe-emodin (AE)/liposome-AE on human nonmelanoma skin cancer cells and skin permeation. Chem Res Toxicol 22:2017–2028PubMedGoogle Scholar
  133. 133.
    Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100PubMedGoogle Scholar
  134. 134.
    Shuda M, Feng H, Kwun HJ, Chang Y, Moore PS (2008) T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci U S A 105:16272–16277PubMedGoogle Scholar
  135. 135.
    Bhatia K, Goedert JJ, Modali R, Preiss L, Ayers LW (2010) Merkel cell carcinoma subgroups by Merkel cell polyomavirus DNA relative abundance and oncogene expression. Int J Cancer 126(9):2240–2246PubMedGoogle Scholar
  136. 136.
    Sihto H, Kukko H, Koljonen V, Sankila R, Bohling T, Joensuu H (2009) Clinical factors associated with Merkel cell polyomavirus infection in Merkel cell carcinoma. J Natl Cancer Inst 101:938–945PubMedGoogle Scholar
  137. 137.
    Garneski KM, Warcola AH, Feng Q, Kiviat NB, Leonard JH, Nghiem P (2009) Merkel cell polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol 129:246–248PubMedGoogle Scholar
  138. 138.
    Becker JC, Houben R, Ugurel S, Trefzer U, Pfohler C, Schrama D (2009) MC polyomavirus is frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol 129:248–250PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sudeep Gaudi
    • 1
  • Patricia M. McNab
    • 1
  • Timothy W. McCardle
    • 1
  • Jane L. Messina
    • 1
    Email author
  1. 1.H. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations