Skip to main content

Molecular Pathology and Diagnostics of Childhood Tumors

  • Chapter
  • First Online:
Molecular Pathology and Diagnostics of Cancer

Part of the book series: Cancer Growth and Progression ((CAGP,volume 16))

  • 2748 Accesses

Abstract

Neoplasms in the fetus and infant are discussed in reference to types, incidence, clinical features, behavior, and response to treatment. Tumors that occur predominately in the first year of life have certain features of embryonic growth, including Wilms’ tumors, neuroblastomas, embryonic sarcomas, yolk sac tumors of the testis, hepatoblastomas, and medulloblastomas of the brain, as well as sacrococcygeal tumors that have an overgrowth of embryonic components. Chromosome translocations, tumor suppressor genes, and some syndromes and congenital malformations associated with childhood tumors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARMS:

Alveolar rhabdomyosarcoma

BWS:

Beckwith-Wiedemann syndrome

CHEK2:

Checkpoint kinase 2

CN:

Cystic nephroma

CNS:

Central nervous system

ERMS:

Embryonal rhabdomyosarcoma

EWS:

Ewing sarcoma

FAP:

Familial adenomatous polyposis

FISH:

Fluorescent in situ hybridization

GIST:

Gastrointestinal stromal tumors

HPV:

Human papilloma virus

IGF2:

Insulin-like growth factor II

MEN1:

Multiple endocrine neoplasia type 1

MEN2:

Multiple endocrine neoplasia type 2

NF1:

Neurofibromatosis type 1

NF2:

Neurofibromatosis type 2

PDGF:

Platelet-derived growth factor

PNET:

Primitive neuroectodermal tumor

PTCH:

Patch

RT-PCR:

Reverse transcription-polymerase chain reaction

SHH:

Sonic hedgehog

SMO:

Smoothened

VHL:

Von Hippel-Lindau

WAGR syndrome:

Wilms’ tumor, aniridia, genitourinary abnormalities and mental retardation

WT-1:

Wilms’ tumor-1 gene product

References

  1. Bader JL, Miller RW (1979) US cancer incidence and mortality in the first year of life. Am J Dis Child 133:157–159

    PubMed  CAS  Google Scholar 

  2. Bolande RP (1971) Benignity of neonatal tumors and concept of cancer repression in early life. Am J Dis Child 122:12–14

    PubMed  CAS  Google Scholar 

  3. Bolande RP (1976) Neoplasia of early life and its relationships to teratogenesis. Perspect Pediatr Pathol 3:145–183

    PubMed  CAS  Google Scholar 

  4. Crist W, Pullen J, Boyett J, Falletta J, van Eys J, Borowitz M, Jackson J, Dowell B, Frankel L, Quddus F et al (1986) Clinical and biologic features predict a poor prognosis in acute lymphoid leukemias in infants: a Pediatric Oncology Group Study. Blood 67:135–140

    PubMed  CAS  Google Scholar 

  5. Young JL Jr, Ries LG, Silverberg E, Horm JW, Miller RW (1986) Cancer incidence, survival, and mortality for children younger than age 15 years. Cancer 58(2 Suppl):598–602

    Article  PubMed  Google Scholar 

  6. Gilbert-Barness E (ed) (2007) Potter’s pathology of the fetus, infant and child, 2nd edn. Mosby-Elsevier, Philadelphia

    Google Scholar 

  7. Reaman G (1993) Special considerations for the infant with cancer, 2nd edn. Lippincott, Philadelphia

    Google Scholar 

  8. Reaman G, Zeltzer P, Bleyer WA, Amendola B, Level C, Sather H, Hammond D (1985) Acute lymphoblastic leukemia in infants less than one year of age: a cumulative experience of the Children's Cancer Study Group. J Clin Oncol 3:1513–1521

    PubMed  CAS  Google Scholar 

  9. Willis RA (1962) The borderland of embryology and pathology. Butterworths, London

    Google Scholar 

  10. Fernbach DJ, Vietti TJ (1991) General aspects of childhood cancer, 3rd edn. Mosby, St. Louis

    Google Scholar 

  11. Isaacs HJ (1993) Tumors of the fetus and infant-an atlas. Springer, New York

    Google Scholar 

  12. Berry PJ (1993) Congenital tumors, 2nd edn. Springer, Berlin

    Google Scholar 

  13. Broadbent VA (1992) Malignant disease in the neonate, 2nd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  14. Gale GB, D'Angio GJ, Uri A, Chatten J, Koop CE (1982) Cancer in neonates: the experience at the children’s hospital of Philadelphia. Pediatrics 70:409–413

    PubMed  CAS  Google Scholar 

  15. Isaacs H Jr (1983) Neoplasms in infants: a report of 265 cases. Pathol Annu 18(Pt 2):165–214

    PubMed  Google Scholar 

  16. Werb P, Scurry J, Ostor A, Fortune D, Attwood H (1992) Survey of congenital tumors in perinatal necropsies. Pathology 24:247–253

    Article  PubMed  CAS  Google Scholar 

  17. Mulvihill JJ (1993) Childhood cancer environment and hereditary, 2nd edn. JB Lippincott, Philadelphia

    Google Scholar 

  18. Isaacs H Jr (2007) Introduction to tumors. In: Gilbert-Barness E (ed) Potter’s pathology of fetus, infant and child, 2nd edn. Elsevier, Philadelphia

    Google Scholar 

  19. Isaacs H Jr (1997) Tumors. In: Gilbert-Barness E (ed) Potter’s pathology of fetus, infant and child. Mosby Year Book, Philadelphia

    Google Scholar 

  20. Lengauer C (2003) Cancer. An unstable liaison. Science 300:442–443

    Article  PubMed  CAS  Google Scholar 

  21. Kinzler KW, Vogelstein B (2001) Familial cancer syndromes the role of caretakers an gatekeepers, 8th edn. McGraw-Hill, New York

    Google Scholar 

  22. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14:427–432

    Article  PubMed  CAS  Google Scholar 

  23. Falls JG, Pulford DJ, Wylie AA, Jirtle RL (1999) Genomic imprinting: implications for human disease. Am J Pathol 154:635–647

    Article  PubMed  CAS  Google Scholar 

  24. Hall JG (1990) Genomic imprinting: review and relevance to human diseases. Am J Hum Genet 46:857–873

    PubMed  CAS  Google Scholar 

  25. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489

    Article  PubMed  CAS  Google Scholar 

  26. Barlow DP (1994) Imprinting: a gamete’s point of view. Trends Genet 1994(10):194–199

    Article  Google Scholar 

  27. Villavicencio EH, Walterhouse DO, Iannaccone PM (2000) The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet 67:1047–1054

    PubMed  CAS  Google Scholar 

  28. Hooper JE, Scott MP (2005) Communicating with hedgehogs. Nat Rev Mol Cell Biol 6:306–317

    Article  PubMed  CAS  Google Scholar 

  29. Yuspa SH, Epstein EH Jr (2005) Cancer. An anchor for tumor cell invasion. Science 307:1727–1728

    Article  PubMed  CAS  Google Scholar 

  30. Meder D, Simons K (2005) Cell biology. Ras on the roundabout. Science 307:1731–1733

    Article  PubMed  CAS  Google Scholar 

  31. Fodde R, Smits R (2002) Cancer biology. A matter of dosage. Science 298:761–763

    Article  PubMed  CAS  Google Scholar 

  32. Wilkin F, Gagne N, Paquette J, Oligny LL, Deal C (2000) Pediatric adrenocortical tumors: molecular events leading to insulin-like growth factor II gene overexpression. J Clin Endocrinol Metab 85:2048–2056

    Article  PubMed  CAS  Google Scholar 

  33. Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR (2005) The pathophysiology of HOX genes and their role in cancer. J Pathol 205:154–171

    Article  PubMed  CAS  Google Scholar 

  34. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  35. Guo W, Giancotti FG (2004) Integrin signaling during tumour progression. Nat Rev Mol Cell Biol 5:816–826

    Article  PubMed  CAS  Google Scholar 

  36. Knudson AG Jr (1986) Genetics of human cancer. Annu Rev Genet 20:231–251

    Article  PubMed  Google Scholar 

  37. Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, Bowdin SC, Riccio A, Sebastio G, Bliek J et al (2005) Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 13:1025–1032

    Article  PubMed  CAS  Google Scholar 

  38. DeBaun MR, Niemitz EL, McNeil DE, Brandenburg SA, Lee MP, Feinberg AP (2002) Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Hum Genet 70:604–611

    Article  PubMed  CAS  Google Scholar 

  39. McTaggart SJ, Algar E, Chow CW, Powell HR, Jones CL (2001) Clinical spectrum of Denys-Drash and Frasier syndrome. Pediatr Nephrol 16:335–339

    Article  PubMed  CAS  Google Scholar 

  40. Pelletier J, Bruening W, Kashtan CE, Mauer SM, Manivel JC, Striegel JE, Houghton DC, Junien C, Habib R, Fouser L et al (1991) Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67:437–447

    Article  PubMed  CAS  Google Scholar 

  41. Porteus MH, Narkool P, Neuberg D, Guthrie K, Breslow N, Green DM, Diller L (2000) Characteristics and outcome of children with Beckwith-Wiedemann syndrome and Wilms’ tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 18:2026–2031

    PubMed  CAS  Google Scholar 

  42. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520

    Article  PubMed  CAS  Google Scholar 

  43. Haber DA, Englert C, Maheswaran S (1996) Functional properties of WT1. Med Pediatr Oncol 27:453–455

    Article  PubMed  CAS  Google Scholar 

  44. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA (1990) Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343:774–778

    Article  PubMed  CAS  Google Scholar 

  45. Gashler AL, Bonthron DT, Madden SL, Rauscher FJ 3rd, Collins T, Sukhatme VP (1992) Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms tumor suppressor WT1. Proc Natl Acad Sci USA 89:10984–10988

    Article  PubMed  CAS  Google Scholar 

  46. Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ 3rd (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257:674–678

    Article  PubMed  CAS  Google Scholar 

  47. Morrison DJ, English MA, Licht JD (2005) WT1 induces apoptosis through transcriptional regulation of the proapoptotic Bcl-2 family member Bak. Cancer Res 65:8174–8182

    Article  PubMed  CAS  Google Scholar 

  48. Scott J, Cowell J, Robertson ME, Priestley LM, Wadey R, Hopkins B, Pritchard J, Bell GI, Rall LB, Graham CF et al (1985) Insulin-like growth factor-II gene expression in Wilms’ tumour and embryonic tissues. Nature 317:260–262

    Article  PubMed  CAS  Google Scholar 

  49. Fraizer GE, Bowen-Pope DF, Vogel AM (1987) Production of platelet-derived growth factor by cultured Wilms’ tumor cells and fetal kidney cells. J Cell Physiol 133:169–174

    Article  PubMed  CAS  Google Scholar 

  50. Eccles MR, Wallis LJ, Fidler AE, Spurr NK, Goodfellow PJ, Reeve AE (1992) Expression of the PAX2 gene in human fetal kidney and Wilms’ tumor. Cell Growth Differ 3:279–289

    PubMed  CAS  Google Scholar 

  51. Little MH, Prosser J, Condie A, Smith PJ, Van Heyningen V, Hastie ND (1992) Zinc finger point mutations within the WT1 gene in Wilms tumor patients. Proc Natl Acad Sci USA 89:4791–4795

    Article  PubMed  CAS  Google Scholar 

  52. Feinberg AP (1996) Multiple genetic abnormalities of 11p15 in Wilms’ tumor. Med Pediatr Oncol 27:484–489

    Article  PubMed  CAS  Google Scholar 

  53. Li M, Squire JA, Weksberg R (1997) Molecular genetics of Beckwith-Wiedemann syndrome. Curr Opin Pediatr 9:623–629

    Article  PubMed  CAS  Google Scholar 

  54. Huff V, Amos CI, Douglass EC, Fisher R, Geiser CF, Krill CE, Li FP, Strong LC, McDonald JM (1997) Evidence for genetic heterogeneity in familial Wilms’ tumor. Cancer Res 57:1859–1862

    PubMed  CAS  Google Scholar 

  55. Rahman N, Abidi F, Ford D, Arbour L, Rapley E, Tonin P, Barton D, Batcup G, Berry J, Cotter F et al (1998) Confirmation of FWT1 as a Wilms’ tumour susceptibility gene and phenotypic characteristics of Wilms’ tumour attributable to FWT1. Hum Genet 103:547–556

    Article  PubMed  CAS  Google Scholar 

  56. Gilbert-Barness EF (ed) (1998) Potter’s atlas of developmental and infant pathology. Mosby Year Book, Philadelphia

    Google Scholar 

  57. Sebire NJ, Malone M, Ashworth M, Jacques TS (2010) Diagnostic pediatric surgical pathology. Churchill-Livingstone/Elsevier, Philadelphia

    Google Scholar 

  58. Argani P, Fritsch M, Kadkol SS, Schuster A, Beckwith JB, Perlman EJ (2000) Detection of the ETV6-NTRK3 chimeric RNA of infantile fibrosarcoma/cellular congenital mesoblastic nephroma in paraffin-embedded tissue: application to challenging pediatric renal stromal tumors. Mod Pathol 13:29–36

    Article  PubMed  CAS  Google Scholar 

  59. Schwab M, Westermann F, Hero B, Berthold F (2003) Neuroblastoma: biology and molecular and chromosomal pathology. Lancet Oncol 4:472–480

    Article  PubMed  CAS  Google Scholar 

  60. Ara T, DeClerck YA (2006) Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev 25:645–657

    Article  PubMed  Google Scholar 

  61. Lastowska M, Cullinane C, Vriend S, Cotterill S, Brown N, O’Neill S, Mazzocco K, Roberts P, Nicholson J, Ellershaw C, Pearson AD, Jackson MS, United Kingdom Children Cancer Study Group and the United Kingdom Cancer Cytogenetics Group (2001) Comprehensive genetic and histopathologic study reveals three types of neuroblastoma tumors. J Clin Oncol 19:3080–3090

    PubMed  CAS  Google Scholar 

  62. Shimada H (2003) The international neuroblastoma pathology classification. Pathologica 95:240–241

    PubMed  CAS  Google Scholar 

  63. Gilbert-Barness E (2007) Potter’s pathology of the fetus, infant and child, vol 1 and 2, 2nd edn. Elsevier, Philadelphia

    Google Scholar 

  64. Peuchmaur M, d’Amore ES, Joshi W, Hata J, Roald B, Dehner LP, Gerbing RB, Stram DO, Lukens JN, Matthay KK, Shimada H (2003) Revision of the international neuroblastoma pathology classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer 98:2274–2281

    Article  PubMed  Google Scholar 

  65. Lakhani VT, You YN, Wells SA (2007) The multiple endocrine neoplasia syndromes. Annu Rev Med 58:253–265

    Article  PubMed  CAS  Google Scholar 

  66. Tognon C, Knezevich SR, Huntsman D et al (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2:367–376

    Article  PubMed  CAS  Google Scholar 

  67. Rajan PB, Cranor ML, Rosen PP (1998) Cytosarcoma phyllodes in adolescent girls and young women: a study of 45 patients. Am J Surg Pathol 22:64–69

    Article  PubMed  CAS  Google Scholar 

  68. Barrio AV, Clark BD, Goldberg JI et al (2007) Clinicopathologic features and long-term outcomes of 293 phyllodes tumors of the breast. Ann Surg Oncol 14:2961–2970

    Article  PubMed  Google Scholar 

  69. Pelizzo G, Conoscenti G, Kalache KD et al (2003) Antenatal manifestation of congenital pancreatoblastoma in a fetus with Beckwith-Wiedemann syndrome. Prenat Diagn 23:292–294

    Article  PubMed  Google Scholar 

  70. Eberhart CG, Kepner JL, Goldthwaite PT et al (2004) Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 63:441–449

    PubMed  CAS  Google Scholar 

  71. Lamont JM, McManamy CS, Pearson AD, Clifford SC, Ellison DW (2004) Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 10:5482–5493

    Article  PubMed  CAS  Google Scholar 

  72. Isaacs H Jr (1997) Tumors. In: Gilbert-Barness EF (ed) Potter’s pathology of the fetus and infant. Mosby Year Book, Philadelphia

    Google Scholar 

  73. Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP (1989) Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet 44:720–723

    PubMed  CAS  Google Scholar 

  74. Wu NF, Kushnick T (1974) The Beckwith-Wiedemann syndrome. The exomphalos-macroglossia-gigantism syndrome. Clin Pediatr (Phila) 13:452–457

    Article  CAS  Google Scholar 

  75. Henry I, Bonaiti-Pellie C, Chehensse V, Beldjord C, Schwartz C, Utermann G, Junien C (1991) Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351:665–667

    Article  PubMed  CAS  Google Scholar 

  76. Dao D, Walsh CP, Yuan L, Gorelov D, Feng L, Hensle T, Nisen P, Yatnashiro DJ, Bestor TH, Tycko B (1999) Multipoint analysis of human chromosome 11p15/mouse digital chromosome 7: inclusion of H19/IGF2 in the minimal WT2 region, gene specificity of H19 silencing in Wilms’ tumorigenesis and methylation hyper-dependence of H19 imprinting. Hum Mol Genet 8:1337–1352

    Article  PubMed  CAS  Google Scholar 

  77. Lee MP, DeBaun MR, Mitsuya K, Galonek HL, Brandenburg S, Oshimura M, Feinberg AP (1999) Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci USA 96:5203–5208

    Article  PubMed  CAS  Google Scholar 

  78. Morison IM, Reeve AE (1998) A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum Mol Genet 7:1599–1609

    Article  PubMed  CAS  Google Scholar 

  79. Onyango P, Miller W, Lehoczky J, Leung CT, Birren B, Wjeelan S, Dewar K, Feinberg AP (2000) Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. Genome Res 10:1697–1710

    Article  PubMed  CAS  Google Scholar 

  80. Paulsen M, Davies KR, Bowden LM, Villar AJ, Franck I, Fuermann M, Dean WL, Moore TF, Rodrigues N, Davies KE et al (1998) Syntenic organization of the mouse distal chromosome 8 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Hum Mol Genet 7:1149–1159

    Article  PubMed  CAS  Google Scholar 

  81. Xin Z, Soejima H, Higashimoto K, Yatsuki H, Zhu X, Satoh Y, Miasaki Z, Kaneko Y, Jimo Y, Fukuzawa R et al (2000) A novel imprinted gene, KCNQ1DN, within the WT2 critical region of human chromosome 11p15.5 and its reduced expression in Wilms’ tumors. J Biochem (Toyko) 128:847–853

    Article  CAS  Google Scholar 

  82. Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Faryniarz AG, Chao MV, Huson S, Korf BR, Parry DM, Pericak-Vance MA et al (1987) Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell 49:589–594

    Article  PubMed  CAS  Google Scholar 

  83. Listernick R, Charrow J, Gutmann DH (1999) Intracranial gliomas in neurofibromatosis type 1. Am J Med Genet 89:38–44

    Article  PubMed  CAS  Google Scholar 

  84. Evans DG, Birch JM, Ramsden RT (1999) Paediatric presentation of type 2 neurofibromatosis. Arch Dis Child 81:496–499

    Article  PubMed  CAS  Google Scholar 

  85. Brook-Carter PT, Peral B, Ward CJ, Thompson P, Hughes J, Maheshwar MM, Nellist M, Gamble V, Harris PC, Sampson JR (1994) Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease-a contiguous gene syndrome. Nat Genet 8:328–332

    Article  PubMed  CAS  Google Scholar 

  86. Crino PB, Nathanson KL, Henskie EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356

    Article  PubMed  CAS  Google Scholar 

  87. Vinaitheerthan M, Wei J, Mizuguchi M, Greco A, Barness EG (2004) Tuberous sclerosis: immunohistochemistry expression of tuberin and hamartin in a 31-week gestational fetus. Fetal Pediatr Pathol 23:241–249

    Article  PubMed  CAS  Google Scholar 

  88. Cavenee WK (1997) Turcot syndrome. International Agency for Research on Cancer, Lyon

    Google Scholar 

  89. Schofield D, West DC, Anthony DC, Marshal R, Sklar J (1995) Correlation of loss of heterozygosity at chromosome 9q with histological subtype in medulloblastomas. Am J Pathol 146:472–480

    PubMed  CAS  Google Scholar 

  90. Cowan R, Hoban P, Kelsey A, Birch JM, Gattamaneni R, Evans DG (1997) The gene for the nevoid basal cell carcinoma syndrome acts as a tumour-suppressor gene in medulloblastoma. Br J Cancer 76:141–145

    Article  PubMed  CAS  Google Scholar 

  91. Wiestler OD, Kleihues P, Vital A, Padberg GW (1997) Cowden disease and dysplastic gangliocytoma of the cerebellum/Lhermitte-Duclos disease. International Agency for Research on Cancer, Lyon

    Google Scholar 

  92. Marsh D, Zori R (2002) Genetic insights into familial cancers-update and recent discoveries. Cancer Lett 181:125–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enid Gilbert-Barness .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gilbert-Barness, E., Eisbrenner, K. (2014). Molecular Pathology and Diagnostics of Childhood Tumors. In: Coppola, D. (eds) Molecular Pathology and Diagnostics of Cancer. Cancer Growth and Progression, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7192-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7192-5_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7191-8

  • Online ISBN: 978-94-007-7192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics