Skip to main content

Numerical Recipes

  • Chapter
  • 1983 Accesses


In this chapter we present key FORTRAN codes that calculate and simulate fundamental physical properties of electrons in nanostructures based on Bloch theorem and Schrödinger equation for the envelope function of electrons presented in Chap. 1. We first calculate the Fermi level as a function of the doping concentration, then the transmission of an electron wave through a potential barrier. Numerical calculations of localized states in one-, two-, and three-dimensionally confined nanostructures are presented. Finally we present the code to simulate time-dependent wave packet transmission through nanostructures. All these codes are used extensively through the book to study and discuss electron transport and light-matter interactions in nanostructures.


  • Quantum Wire
  • Envelope Function
  • Total Wave Function
  • Free Electron Mass
  • Wave Function Normalization

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-7174-1_6
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-7174-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7


  1. Bednarczyk D, Bednarczyk J (1978) The approximation of the Fermi-Dirac integral F 1/2(η). Phys Lett A 64:409–410

    ADS  CrossRef  Google Scholar 

  2. Dresselhaus G, Kip AF, Kittel C (1955) Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys Rev 98:368–384

    ADS  CrossRef  Google Scholar 

  3. Tiersten M (1961) Acoustic-mode scattering of holes. IBM J Res Dev 5:122–131

    MATH  CrossRef  Google Scholar 

  4. Pikus GE, Bir GL (1959) Effect of deformation on the hole energy spectrum of germanium and silicon. Sov Phys, Solid State 1:1502–1517

    Google Scholar 

  5. Economons EN (1979) Green’s function in quantum physics, Cardona M (ed). Springer, Berlin

    CrossRef  Google Scholar 

  6. Fu Y (1987) Correlations of lattice vibrations. Chin Phys Lett 4:309–312

    ADS  CrossRef  Google Scholar 

  7. Fu Y, Willander M, Han P, Matsuura T, Murota J (1998) Local environment effect on electronic band structure of cubic Si1−y C y alloy. Phys Rev B 58:7717–7722

    ADS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, Y. (2014). Numerical Recipes. In: Physical Models of Semiconductor Quantum Devices. Springer, Dordrecht.

Download citation