Skip to main content
  • 2074 Accesses

Abstract

Detailed aspects about light-matter interactions in nanostructure materials are presented and discussed in terms of optoelectronics performance. We begin with quantum selection rules about optical intraband and interband transitions and thereafter the optical grating required for photodetector. We further discuss the functions of solar cell, light-emitting diode, and nanostructure laser. Quantum-dot-based biomarkers for bioimaging applications are introduced by the end of the chapter to demonstrate the extension of information-communication-technology (ICT)-predominant solid-state nanotechnologies to many other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee G, Chun SK, Wang KL (1993). In: 51th annual device research conference, Santa Barbara, CA

    Google Scholar 

  2. Fu Y, Chao KA (1989) Subband structures of GaAs/AlGaAs multiple quantum wells. Phys Rev B 40:8349–8356

    Article  ADS  Google Scholar 

  3. Andersson JY, Lundqvist L (1992) Grating coupled quantum well infrared detectors: theory and performance. J Appl Phys 71:3600–3610

    Article  ADS  Google Scholar 

  4. Pan D, Li JM, Li YP, Kong MY (1996) Long period two-dimensional gratings for 8–12 μm quantum well infrared photodetectors. J Appl Phys 80:7069–7071

    Google Scholar 

  5. Andersson JY, Lundqvist L (1991) Near-unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler. Appl Phys Lett 59:857–859

    Article  ADS  Google Scholar 

  6. Andersson JY, Lundqvist L, Paska ZF (1991) Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler. Appl Phys Lett 58:2264–2266

    Article  ADS  Google Scholar 

  7. Andersson JY, Lundqvist L, Paska ZF, Borglind J, Haga D (1993) Efficiency of grating coupled AlGaAs/GaAs quantum well infrared detectors. Appl Phys Lett 63:3361–3363

    Article  ADS  Google Scholar 

  8. Goossen KW, Lyon SA, Alavi K (1988) Grating enhancement of quantum well detector response. Appl Phys Lett 53:1027–1029

    Article  ADS  Google Scholar 

  9. Goossen KW, Lyon SA (1988) Performance aspects of a quantum well detector. J Appl Phys 63:5149–5153

    Article  ADS  Google Scholar 

  10. Yu LS, Li SS, Wang YH, Kao YC (1992) A study of the coupled efficiency versus grating periodicity in a normal incident GaAs/AlGaAs multi-quantum-well infrared detector. J Appl Phys 72:2105–2109

    Article  ADS  Google Scholar 

  11. Levine BF, Choi KK, Bethea CG, Walker J, Malik RJ (1987) New 10 μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices. Appl Phys Lett 50:1092–1094

    Article  ADS  Google Scholar 

  12. Levine BF (1993) Quantum-well infrared photodetectors. J Appl Phys 74:R1–R81

    Article  ADS  Google Scholar 

  13. Kishino K, Arai S (1994) Integrated lasers. In: Handbook of semiconductor lasers and photonic integrated circuits. Chapman & Hall, London, p 350, Chap. 11

    Google Scholar 

  14. Stover JC (1990) Optical scattering: measurement and analysis. McGraw-Hill, New York, p 51

    Google Scholar 

  15. Cowley J (1995) Diffraction physics. Elsevier, Amsterdam, p 11

    Google Scholar 

  16. Choi K-K, Forrai DP, Endres DW, Sun J (2009) IEEE J Quantum Electron 45:1255

    Article  ADS  Google Scholar 

  17. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14:302–307

    ADS  MATH  Google Scholar 

  18. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method, 2nd edn. Artech House, Boston

    Google Scholar 

  19. Chen Z-H, Hellström S, Yu Z-Y, Qiu M, Fu Y (2012) Time-resolved photocurrents in quantum well/dot infrared photodetectors with different optical coupling structures. Appl Phys Lett 100 043502

    Article  ADS  Google Scholar 

  20. Fu Y, Willander M, Liu X-Q, Lu W, Shen SC, Tan HH, Jagadish C, Zou J, Cockayne DJH (2001) Optical transition in infrared photodetector based on V-groove Al0.5Ga0.5As/GaAs multiple quantum wire. J Appl Phys 89:2351–2356

    Article  ADS  Google Scholar 

  21. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667

    Article  ADS  Google Scholar 

  22. Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Posani KT, Tripathi V, Annamalai S, Weisse-Bernstein NR, Krishnaa S, Perahia R, Crisafulli O, Painter OJ (2006) Nanoscale quantum dot infrared sensors with photonic crystal cavity. Appl Phys Lett 88 151104

    Article  ADS  Google Scholar 

  24. Shenoia RV, Ramireza DA, Sharmaa Y, Attaluria RS, Rosenbergb J, Painterb OJ, Krishnaa S (2007) Plasmon assisted photonic crystal quantum dot sensors. Proc SPIE 6713, 67130

    Article  ADS  Google Scholar 

  25. Chang C-Y, Chang H-Y, Chen C-Y, Tsai M-W, Chang Y-T, Lee S-C, Tang S-F (2007) Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays. Appl Phys Lett 91:163107

    Article  ADS  Google Scholar 

  26. Lee SC, Krishna S, Brueck SRJ (2009) Quantum dot infrared photodetector enhanced by surface plasma wave excitation. Opt Express 17:23160–23168

    Article  ADS  Google Scholar 

  27. Tsaur BY, Chen CK, Marino SA (1991) Long wavelength Ge x Si1−x /Si heterojunction infrared detectors and 400∗400 element image arrays. IEEE Electron Device Lett 12:293–296

    Article  ADS  Google Scholar 

  28. Lin TL, Ksendzov A, Dejewski SM, Jones EW, Fathauer RW, Krabach TN, Maserjian J (1991) SiGe/Si heterojunction internal photoemission long-wavelength infrared detectors fabricated by molecular beam epitaxy. IEEE Trans Electron Devices 38:1141–1144

    Article  ADS  Google Scholar 

  29. Van de Walle CG, Martin RM (1986) Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys Rev B 34:5621–5634

    Article  ADS  Google Scholar 

  30. Jain SC, Hayes W (1991) Structure, properties and applications of Ge x Si1−x strained layers and superlattices. Semicond Sci Technol 6:547–576

    Article  ADS  Google Scholar 

  31. Bean JC (1992) Silicon-based semiconductor heterostructures: column IV bandgap engineering. Proc IEEE 80:571–581

    Article  ADS  Google Scholar 

  32. Jain SC, Poortmans J, Nijs J, Van Mieghem P, Mertens RP, Van Overstraeten R (1992) Band offsets in heavily doped p-type GeSi/Si(100) strained layers: applications to design of long-wavelength infrared (LWIR) detectors. Microelectron Eng 19:439–442

    Article  Google Scholar 

  33. Jain SC, Roulston DJ (1991) A simple expression for bandgap narrowing (BGN) in heavily doped Si, Ge, GaAs and Ge x Si1−x strained layers. Solid-State Electron 34:453–465

    Article  ADS  Google Scholar 

  34. Shockley W, Queisser HJ (1961) J Appl Phys 32:510

    Article  ADS  Google Scholar 

  35. Maxwell-Garnett JC (1906) Colours in metal glasses, in metallic films, and in metallic solutions. II. Philos Trans R Soc Lond 205:237–288

    Article  ADS  Google Scholar 

  36. Cohen RW, Cody GD, Coutts MD, Abeles B (1973) Optical properties of granular silver and gold films. Phys Rev B 8:3689–3701

    Article  ADS  Google Scholar 

  37. Gittleman JI, Abeles B (1977) Comparison of the effective medium and the Maxwell-Garnett predictions for the dielectric constants of granular metals. Phys Rev B 15:3273–3275

    Article  ADS  Google Scholar 

  38. Stockman MI (2007) Phys Rev Lett 98:177404

    Article  ADS  Google Scholar 

  39. Sun JP, Mains RK, Chen WL, East JR, Haddad GI (1992) C–V and I–V characteristics of quantum well varactors. J Appl Phys 76:2340–2346

    Article  ADS  Google Scholar 

  40. Capasso F, Sen S, Beltram F, Lunardi LM, Vengurlekar AS, Smith PR, Shah NJ, Malik RJ, Cho AY (1989) Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic. IEEE Trans Electron Devices 36:2065–2082

    Article  ADS  Google Scholar 

  41. England PE, Golub JE, Florez LT, Harbison JP (1991) Optical switching in a resonant tunneling structure. Appl Phys Lett 58:887–889

    Article  ADS  Google Scholar 

  42. White CRH, Skolnick MS, Eaves L, Leadbeater ML (1991) Electroluminescence and impact ionization phenomena in a double-barrier resonant tunneling structure. Appl Phys Lett 58:1164–1166

    Article  ADS  Google Scholar 

  43. Van Hoof C, Borghs G, Goovaerts E (1991) Optical detection of light- and heavy-hole resonant tunneling in p-type resonant tunneling structures. Appl Phys Lett 59:2139–2141

    Article  ADS  Google Scholar 

  44. Van Hoof C, Genoe J, Mertens R, Borghs G, Goovaerts E (1992) Electroluminescence from bipolar resonant tunneling diodes. Appl Phys Lett 60:77–79

    Article  ADS  Google Scholar 

  45. Tolstikhin VI, Willander M (1995) Resonant tunneling injection hot electron laser: an approach to picosecond gain-switching and pulse generation. Appl Phys Lett 67:2684–2686

    Article  ADS  Google Scholar 

  46. Faist J, Capasso F, Sirtori C, Sivco DL, Hutchinson AL, Cho AY (1994) Quantum cascade laser. Science 264:553–556

    Article  ADS  Google Scholar 

  47. Sirtori C, Faist J, Capasso F, Sivco DL, Hutchinson AL, Chu SN, Cho AY (1996) Continuous wave operation of midinfrared (7.4–8.6 μm) quantum cascade lasers up to 110 K temperature. Appl Phys Lett 68:1745–1747

    Article  ADS  Google Scholar 

  48. Faist J, Capasso F, Sirtori C, Sivco DL, Baillargeon JN, Hutchinson AL, Chu SN, Cho AY (1996) High power midinfrared (λ∼5 μm) quantum cascade lasers operating above room temperature. Appl Phys Lett 68:3680–3682

    Article  ADS  Google Scholar 

  49. Schubert EF (1996) Delta-doping of semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  50. Wang SM, Zhao QX, Wang XD, Wei YQ, Sadeghi M, Larsson A (2004) 1.3 to 1.5 μm light emission from InGaAs/GaAs quantum wells. Appl Phys Lett 85:875–877

    Article  ADS  Google Scholar 

  51. Hirschi KK, Ingram DA, Yoder MC (2008) Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28:1584–1595

    Article  Google Scholar 

  52. Fadini G, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197:496–503

    Article  Google Scholar 

  53. Molnár M, Fu Y, Friberg P, Chen Y (2010) Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells. J Nanobiotechnol 8:2. doi:10.1186/1477-3155-8-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, Y. (2014). Nanostructured Optoelectronics. In: Physical Models of Semiconductor Quantum Devices. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7174-1_5

Download citation

Publish with us

Policies and ethics